You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23645
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGama, S. M.-
dc.contributor.authorKraenkel, Roberto André-
dc.contributor.authorManna, M. A.-
dc.date.accessioned2014-05-20T14:07:22Z-
dc.date.accessioned2016-10-25T17:12:41Z-
dc.date.available2014-05-20T14:07:22Z-
dc.date.available2016-10-25T17:12:41Z-
dc.date.issued2001-08-01-
dc.identifierhttp://dx.doi.org/10.1088/0266-5611/17/4/318-
dc.identifier.citationInverse Problems. Bristol: Iop Publishing Ltd, v. 17, n. 4, p. 863-870, 2001.-
dc.identifier.issn0266-5611-
dc.identifier.urihttp://hdl.handle.net/11449/23645-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23645-
dc.description.abstractIn this paper we discuss the nonlinear propagation of waves of short wavelength in dispersive systems. We propose a family of equations that is likely to describe the asymptotic behaviour of a large class of systems. We then restrict our attention to the analysis of the simplest nonlinear short-wave dynamics given by U-0 xi tau, = U-0 - 3(U-0)(2). We integrate numerically this equation for periodic and non-periodic boundary conditions, and we find that short waves may exist only if the amplitude of the initial profile is not too large.en
dc.format.extent863-870-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleShort-wave instabilities in the Benjamin-Bona-Mahoney-Peregrine equation: theory and numericsen
dc.typeoutro-
dc.contributor.institutionUniv Porto-
dc.contributor.institutionOCA-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Montpellier 2-
dc.description.affiliationUniv Porto, CMAUP, Dept Matemat Aplicada, P-4050600 Oporto, Portugal-
dc.description.affiliationOCA, UMR 6529, Dept GD Cassini, F-06304 Nice 4, France-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUniv Montpellier 2, CNRS UMR 5825, F-34095 Montpellier, France-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1088/0266-5611/17/4/318-
dc.identifier.wosWOS:000170573300019-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInverse Problems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.