You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFeng, B. F.-
dc.contributor.authorMalomed, B. A.-
dc.contributor.authorKawahara, T.-
dc.date.accessioned2014-05-20T14:07:43Z-
dc.date.accessioned2016-10-25T17:12:58Z-
dc.date.available2014-05-20T14:07:43Z-
dc.date.available2016-10-25T17:12:58Z-
dc.date.issued2002-11-01-
dc.identifierhttp://dx.doi.org/10.1143/JPSJ.71.2700-
dc.identifier.citationJournal of the Physical Society of Japan. Tokyo: Physical Society Japan, v. 71, n. 11, p. 2700-2707, 2002.-
dc.identifier.issn0031-9015-
dc.identifier.urihttp://hdl.handle.net/11449/23780-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23780-
dc.description.abstractPeriodic waves are investigated in a system composed of a Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation linearly coupled to an extra linear dissipative one. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the net field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value u(0) of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L, u(0)), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.en
dc.format.extent2700-2707-
dc.language.isoeng-
dc.publisherPhysical Society Japan-
dc.sourceWeb of Science-
dc.subjectperiodic wavespt
dc.subjectKuramoto-Sivashinsky-Korteweg-de Vriespt
dc.subjectequationpt
dc.titleStable periodic waves in coupled Kuramoto-Sivashinsky-Korteweg-de Vries equationsen
dc.typeoutro-
dc.contributor.institutionUniversity of Kansas (KU)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionKyoto Univ-
dc.description.affiliationUniv Kansas, Dept Math, Lawrence, KS 66045 USA-
dc.description.affiliationUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationKyoto Univ, Grad Sch Engn, Dept Aeronaut & Astronaut, Sakyo Ku, Kyoto 6068501, Japan-
dc.description.affiliationUnespUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1143/JPSJ.71.2700-
dc.identifier.wosWOS:000179414000025-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of the Physical Society of Japan-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.