Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/23853
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | da Rocha, R. | - |
dc.contributor.author | da Silvab, J. M. Hoff | - |
dc.date.accessioned | 2014-05-20T14:08:02Z | - |
dc.date.available | 2014-05-20T14:08:02Z | - |
dc.date.issued | 2007-12-01 | - |
dc.identifier | http://dx.doi.org/10.1063/1.2825840 | - |
dc.identifier.citation | Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 48, n. 12, 11 p., 2007. | - |
dc.identifier.issn | 0022-2488 | - |
dc.identifier.uri | http://hdl.handle.net/11449/23853 | - |
dc.description.abstract | Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics. | en |
dc.format.extent | 11 | - |
dc.language.iso | eng | - |
dc.publisher | American Institute of Physics (AIP) | - |
dc.source | Web of Science | - |
dc.title | From Dirac spinor fields to eigenspinoren des ladungskonjugationsoperators | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do ABC (UFABC) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Federal do ABC (UFABC), Ctr Matemat Computacao & Cognicao, BR-09210170 São Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil | - |
dc.identifier.doi | 10.1063/1.2825840 | - |
dc.identifier.wos | WOS:000251987900034 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.identifier.file | WOS000251987900034.pdf | - |
dc.relation.ispartof | Journal of Mathematical Physics | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.