You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23944
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalieiro, R. G.-
dc.contributor.authorRosenfeld, Rogério-
dc.date.accessioned2014-05-20T14:08:14Z-
dc.date.accessioned2016-10-25T17:14:10Z-
dc.date.available2014-05-20T14:08:14Z-
dc.date.available2016-10-25T17:14:10Z-
dc.date.issued2004-12-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2004.06.018-
dc.identifier.citationPhysica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 344, n. 3-4, p. 484-490, 2004.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/23944-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23944-
dc.description.abstractThere is a well-developed framework, the Black-Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is flawed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black-Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more efficient hedging strategies of these instruments. (C) 2004 Elsevier B.V. All rights reserved.en
dc.format.extent484-490-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectoption pricingpt
dc.subjectnon-gaussian distributionpt
dc.titleTesting option pricing with the Edgeworth expansionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionBanco Itau-
dc.description.affiliationUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationBanco Itau, BR-04344902 São Paulo, Brazil-
dc.description.affiliationUnespUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1016/j.physa.2004.06.018-
dc.identifier.wosWOS:000225129100018-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.