You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuruganandam, P.-
dc.contributor.authorAdhikari, Sadhan Kumar-
dc.date.accessioned2014-05-20T14:09:04Z-
dc.date.accessioned2016-10-25T17:16:18Z-
dc.date.available2014-05-20T14:09:04Z-
dc.date.available2016-10-25T17:16:18Z-
dc.date.issued2009-10-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cpc.2009.04.015-
dc.identifier.citationComputer Physics Communications. Amsterdam: Elsevier B.V., v. 180, n. 10, p. 1888-1912, 2009.-
dc.identifier.issn0010-4655-
dc.identifier.urihttp://hdl.handle.net/11449/24106-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24106-
dc.description.abstractHere we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular. we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size or stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all).en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipInstitute for Mathematical Sciences of the National University of Singapore-
dc.description.sponsorshipThird World Academy of Sciences-
dc.format.extent1888-1912-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectBose-Einstein condensateen
dc.subjectGross-Pitaevskii equationen
dc.subjectSplit-step Crank-Nicolson schemeen
dc.subjectReal- and imaginary-time propagationen
dc.subjectFortran programen
dc.subjectPartial differential equationen
dc.titleFortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trapen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionBharathidasan Univ-
dc.description.affiliationUNESP São Paulo State Univ, Inst Fis Teor, BR-01140070 São Paulo, Brazil-
dc.description.affiliationBharathidasan Univ, Sch Phys, Tiruchchirappalli 620024, Tamil Nadu, India-
dc.description.affiliationUnespUNESP São Paulo State Univ, Inst Fis Teor, BR-01140070 São Paulo, Brazil-
dc.identifier.doi10.1016/j.cpc.2009.04.015-
dc.identifier.wosWOS:000270628200020-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputer Physics Communications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.