You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24131
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArtiles, W.-
dc.contributor.authorKraenkel, Roberto André-
dc.contributor.authorManna, M. A.-
dc.date.accessioned2014-05-20T14:09:16Z-
dc.date.accessioned2016-10-25T17:16:39Z-
dc.date.available2014-05-20T14:09:16Z-
dc.date.available2016-10-25T17:16:39Z-
dc.date.issued2009-08-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physd.2009.06.015-
dc.identifier.citationPhysica D-nonlinear Phenomena. Amsterdam: Elsevier B.V., v. 238, n. 17, p. 1821-1825, 2009.-
dc.identifier.issn0167-2789-
dc.identifier.urihttp://hdl.handle.net/11449/24131-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24131-
dc.description.abstractWe address the question of determining the evolution equation for surface waves propagating in water whose depth is much larger than the typical wavelength of the surface disturbance. We avoid making the usual approximation of supposing the evolution to be given in the form of a modulated wave-packet. We treat the problem by means of a conformal transformation allowing to explicitly find the Dirichlet-to-Neumann operator for the problem together with asymptotic expansions in parameters measuring the nonlinearity and depth. This allows us to obtain an equation in physical variables valid in the weakly nonlinear, deep-water regime. The equation is an integro-differential equation, which reduces to known cases for infinite depth. We discuss solutions in a perturbative setting and show that the evolution equation describes Stokes-like waves. (C) 2009 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCentre national de la recherche scientifique (CNRS)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent1821-1825-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectWater-wavesen
dc.subjectDeep-water asymptoticsen
dc.subjectConformal mappingen
dc.subjectStokes wavesen
dc.titleEvolution equation for short surface waves on water of finite depthen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversité Montpellier 2-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, Univ Estadual Paulista, BR-01140070 São Paulo, Brazil-
dc.description.affiliationUniv Montpellier 2, CNRS, UMR5207, F-34095 Montpellier 05, France-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, Univ Estadual Paulista, BR-01140070 São Paulo, Brazil-
dc.identifier.doi10.1016/j.physd.2009.06.015-
dc.identifier.wosWOS:000269296000008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica D: Nonlinear Phenomena-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.