You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24152
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCassol-Seewald, N. C.-
dc.contributor.authorFarias, R. L. S.-
dc.contributor.authorKrein, Gastão Inácio-
dc.contributor.authorMarques de Carvalho, R. S.-
dc.date.accessioned2013-09-30T18:53:23Z-
dc.date.accessioned2014-05-20T14:09:22Z-
dc.date.accessioned2016-10-25T17:16:50Z-
dc.date.available2013-09-30T18:53:23Z-
dc.date.available2014-05-20T14:09:22Z-
dc.date.available2016-10-25T17:16:50Z-
dc.date.issued2012-08-01-
dc.identifierhttp://dx.doi.org/10.1142/S0129183112400165-
dc.identifier.citationInternational Journal of Modern Physics C. Singapore: World Scientific Publ Co Pte Ltd, v. 23, n. 8, p. 9, 2012.-
dc.identifier.issn0129-1831-
dc.identifier.urihttp://hdl.handle.net/11449/24152-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24152-
dc.description.abstractThe time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent9-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectDynamical phase transitionsen
dc.subjectstochastic quantizationen
dc.titleNOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONSen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São João del-Rei (UFSJ)-
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, Brazil-
dc.description.affiliationUniv Fed Sao Joao Del Rei, Dept Ciencias Nat, BR-36301000 Sao Joao Del Rei, MG, Brazil-
dc.description.affiliationUniv Fed São Paulo, Dept Informat Saude, Escola Paulista Med, BR-04023062 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, Brazil-
dc.identifier.doi10.1142/S0129183112400165-
dc.identifier.wosWOS:000307849200017-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofInternational Journal of Modern Physics C-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.