You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24178
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiro, T. S.-
dc.contributor.authorRosenfeld, Rogério-
dc.date.accessioned2013-09-30T18:53:39Z-
dc.date.accessioned2014-05-20T14:09:30Z-
dc.date.accessioned2016-10-25T17:18:35Z-
dc.date.available2013-09-30T18:53:39Z-
dc.date.available2014-05-20T14:09:30Z-
dc.date.available2016-10-25T17:18:35Z-
dc.date.issued2008-03-01-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2007.10.067-
dc.identifier.citationPhysica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 387, n. 7, p. 1603-1612, 2008.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/24178-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24178-
dc.description.abstractIn this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent1603-1612-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectstochastic volatilityen
dc.subjectBorn-Oppenheimer approximationen
dc.subjectpower-law distribution of returnsen
dc.titleMicroscopic origin of non-Gaussian distributions of financial returnsen
dc.typeoutro-
dc.contributor.institutionRMKI-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationRMKI, KFKI, Budapest, Hungary-
dc.description.affiliationState Univ São Paulo, Inst Fis Teor, São Paulo, Brazil-
dc.description.affiliationUnespState Univ São Paulo, Inst Fis Teor, São Paulo, Brazil-
dc.identifier.doi10.1016/j.physa.2007.10.067-
dc.identifier.wosWOS:000253188700018-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.