Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24178
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biro, T. S. | - |
dc.contributor.author | Rosenfeld, Rogério | - |
dc.date.accessioned | 2013-09-30T18:53:39Z | - |
dc.date.accessioned | 2014-05-20T14:09:30Z | - |
dc.date.accessioned | 2016-10-25T17:18:35Z | - |
dc.date.available | 2013-09-30T18:53:39Z | - |
dc.date.available | 2014-05-20T14:09:30Z | - |
dc.date.available | 2016-10-25T17:18:35Z | - |
dc.date.issued | 2008-03-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.physa.2007.10.067 | - |
dc.identifier.citation | Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 387, n. 7, p. 1603-1612, 2008. | - |
dc.identifier.issn | 0378-4371 | - |
dc.identifier.uri | http://hdl.handle.net/11449/24178 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24178 | - |
dc.description.abstract | In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved. | en |
dc.format.extent | 1603-1612 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | stochastic volatility | en |
dc.subject | Born-Oppenheimer approximation | en |
dc.subject | power-law distribution of returns | en |
dc.title | Microscopic origin of non-Gaussian distributions of financial returns | en |
dc.type | outro | - |
dc.contributor.institution | RMKI | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | RMKI, KFKI, Budapest, Hungary | - |
dc.description.affiliation | State Univ São Paulo, Inst Fis Teor, São Paulo, Brazil | - |
dc.description.affiliationUnesp | State Univ São Paulo, Inst Fis Teor, São Paulo, Brazil | - |
dc.identifier.doi | 10.1016/j.physa.2007.10.067 | - |
dc.identifier.wos | WOS:000253188700018 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Physica A: Statistical Mechanics and Its Applications | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.