You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCassol-Seewald, N. C.-
dc.contributor.authorCopetti, M. I. M.-
dc.contributor.authorKrein, Gastão Inácio-
dc.date.accessioned2013-09-30T18:53:42Z-
dc.date.accessioned2014-05-20T14:09:32Z-
dc.date.accessioned2016-10-25T17:18:36Z-
dc.date.available2013-09-30T18:53:42Z-
dc.date.available2014-05-20T14:09:32Z-
dc.date.available2016-10-25T17:18:36Z-
dc.date.issued2008-09-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cpc.2008.03.001-
dc.identifier.citationComputer Physics Communications. Amsterdam: Elsevier B.V., v. 179, n. 5, p. 297-309, 2008.-
dc.identifier.issn0010-4655-
dc.identifier.urihttp://hdl.handle.net/11449/24187-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24187-
dc.description.abstractWe consider the out-of-equilibrium time evolution of a nonconserved order parameter using the Ginzburg-Landau equation including memory effects. Memory effects are expected to play important role on the nonequilibrium dynamics for fast phase transitions, in which the time scales of the rapid phase conversion are comparable to the microscopic time scales. We consider two numerical approximation schemes based on Fourier collocation and finite difference methods and perform a numerical analysis with respect to the existence, stability and convergence of the schemes. We present results of direct numerical simulations for one and three spatial dimensions, and examine numerically the stability and convergence of both approximation schemes. (C) 2008 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent297-309-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectnonequilibrium phase transitionen
dc.subjectspinodal decompositionen
dc.subjectGinzburg-Landau equationen
dc.subjectnumerical analysisen
dc.titleNumerical approximation of the Ginzburg-Landau equation with memory effects in the dynamics of phase transitionsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Santa Maria (UFSM)-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUniversidade Federal de Santa Maria (UFSM), Dept Matemat, Lab Anal Numer & Astrofis, BR-97119900 Santa Maria, RS, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1016/j.cpc.2008.03.001-
dc.identifier.wosWOS:000259077200002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputer Physics Communications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.