Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24347
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kraenkel, Roberto André | - |
dc.contributor.author | Pamplona da Silva, D. J. | - |
dc.date.accessioned | 2013-09-30T18:55:56Z | - |
dc.date.accessioned | 2014-05-20T14:10:35Z | - |
dc.date.accessioned | 2016-10-25T17:21:25Z | - |
dc.date.available | 2013-09-30T18:55:56Z | - |
dc.date.available | 2014-05-20T14:10:35Z | - |
dc.date.available | 2016-10-25T17:21:25Z | - |
dc.date.issued | 2010-01-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.physa.2009.09.023 | - |
dc.identifier.citation | Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 389, n. 1, p. 60-66, 2010. | - |
dc.identifier.issn | 0378-4371 | - |
dc.identifier.uri | http://hdl.handle.net/11449/24347 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24347 | - |
dc.description.abstract | We consider the dynamics of a biological population described by the Fisher-Kolmogorov Petrovskii-Piskunov (FKPP) equation in the case where the spatial domain consists of alternating favorable and adverse patches whose sizes are distributed randomly. For the one-dimensional case we define a stochastic analogue of the classical critical patch size We address the Issue of persistence of a population and we show that the fraction of the length of favorable segments to the total length is always smaller in the stochastic case than in a periodic arrangement. In this sense, spatial stochasticity favors viability of a population. (C) 2009 Elsevier B.V. All rights reserved. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.format.extent | 60-66 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | Population dynamics | en |
dc.subject | Fisher-Kolmogorov-Petrovski-Piskunov equation | en |
dc.subject | Fragmentation | en |
dc.subject | Spatial stochasticity | en |
dc.subject | Reaction-diffusion | en |
dc.title | Stochastic Skellam model | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, Brazil | - |
dc.identifier.doi | 10.1016/j.physa.2009.09.023 | - |
dc.identifier.wos | WOS:000271685900008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Physica A: Statistical Mechanics and Its Applications | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.