You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBattistel, O. A.-
dc.contributor.authorDallabona, G.-
dc.contributor.authorKrein, Gastão Inácio-
dc.date.accessioned2013-09-30T18:58:02Z-
dc.date.accessioned2014-05-20T14:11:41Z-
dc.date.available2013-09-30T18:58:02Z-
dc.date.available2014-05-20T14:11:41Z-
dc.date.issued2008-03-01-
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.77.065025-
dc.identifier.citationPhysical Review D. College Pk: Amer Physical Soc, v. 77, n. 6, p. 19, 2008.-
dc.identifier.issn1550-7998-
dc.identifier.urihttp://hdl.handle.net/11449/24476-
dc.description.abstractA novel strategy to handle divergences typical of perturbative calculations is implemented for the Nambu-Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the method is to avoid the critical step involved in the regularization process, namely, the explicit evaluation of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way and making use, in intermediary steps, only of very general properties of such regularization. The finite parts are separated from the divergent ones and integrated free from effects of the regularization. The divergent parts are organized in terms of standard objects, which are independent of the ( arbitrary) momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of properties for the divergent objects are identified, which we denominate consistency relations, reducing the number of divergent objects to only a few. The calculational strategy eliminates unphysical dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free, and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining arbitrariness is removed. The model becomes predictive in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-quark coupling constants.en
dc.format.extent19-
dc.language.isoeng-
dc.publisherAmer Physical Soc-
dc.sourceWeb of Science-
dc.titlePredictive formulation of the Nambu-Jona-Lasinio modelen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Santa Maria (UFSM)-
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Fed Santa Maria, Dept Fis, BR-97119900 Santa Maria, RS, Brazil-
dc.description.affiliationUniv Fed Lavras, Dept Ciencias Exatas, BR-37200000 Lavras, MG, Brazil-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405 São Paulo, Brazil-
dc.identifier.doi10.1103/PhysRevD.77.065025-
dc.identifier.wosWOS:000254544500112-
dc.rights.accessRightsAcesso restrito-
dc.identifier.fileWOS000254544500112.pdf-
dc.relation.ispartofPhysical Review D-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.