Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24807
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pontes, B. R. | - |
dc.contributor.author | Oliveira, V. A. | - |
dc.contributor.author | Balthazar, José Manoel | - |
dc.date.accessioned | 2014-02-26T17:12:14Z | - |
dc.date.accessioned | 2014-05-20T14:16:01Z | - |
dc.date.accessioned | 2016-10-25T17:39:13Z | - |
dc.date.available | 2014-02-26T17:12:14Z | - |
dc.date.available | 2014-05-20T14:16:01Z | - |
dc.date.available | 2016-10-25T17:39:13Z | - |
dc.date.issued | 2001-07-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S0218127401003188 | - |
dc.identifier.citation | International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 11, n. 7, p. 2019-2029, 2001. | - |
dc.identifier.issn | 0218-1274 | - |
dc.identifier.uri | http://hdl.handle.net/11449/24807 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24807 | - |
dc.description.abstract | In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior. | en |
dc.format.extent | 2019-2029 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.title | On stick-slip homoclinic chaos and bifurcations in a mechanical system with dry friction | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.description.affiliation | UNESP, Dept Engn Mecan, BR-17030360 Bauru, SP, Brazil | - |
dc.description.affiliation | Univ Fed Sao Carlos, USP, BR-13560970 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | UNESP, Dept Estatist Matemat Aplicada & Computac, BR-13500230 Rio Claro, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP, Dept Engn Mecan, BR-17030360 Bauru, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP, Dept Estatist Matemat Aplicada & Computac, BR-13500230 Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1142/S0218127401003188 | - |
dc.identifier.wos | WOS:000171336700018 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal of Bifurcation and Chaos | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.