You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBelato, D.-
dc.contributor.authorBalthazar, José Manoel-
dc.contributor.authorWeber, H. I.-
dc.date.accessioned2014-02-26T17:17:36Z-
dc.date.accessioned2014-05-20T14:16:02Z-
dc.date.accessioned2016-10-25T17:39:13Z-
dc.date.available2014-02-26T17:17:36Z-
dc.date.available2014-05-20T14:16:02Z-
dc.date.available2016-10-25T17:39:13Z-
dc.date.issued2003-12-01-
dc.identifierhttp://dx.doi.org/10.1023/B:NODY.0000013510.13416.2e-
dc.identifier.citationNonlinear Dynamics. Dordrecht: Kluwer Academic Publ, v. 34, n. 3-4, p. 309-317, 2003.-
dc.identifier.issn0924-090X-
dc.identifier.urihttp://hdl.handle.net/11449/24809-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24809-
dc.description.abstractThe investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.en
dc.format.extent309-317-
dc.language.isoeng-
dc.publisherKluwer Academic Publ-
dc.sourceWeb of Science-
dc.subjectnon-hyperbolic solutionpt
dc.subjectpendulumpt
dc.subjectphase portrait geometrypt
dc.subjectnonlinear dynamicspt
dc.titleA note about the appearance of non-hyperbolic solutions in a mechanical pendulum systemen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)-
dc.description.affiliationUNICAMP, Fac Engn Mecan, Dept Projeto Mecan, BR-13803970 Campinas, SP, Brazil-
dc.description.affiliationUNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil-
dc.description.affiliationPontificia Univ Catolica Rio de Janeiro, Dept Engn Mecan, BR-22453900 Rio de Janeiro, Brazil-
dc.description.affiliationUnespUNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil-
dc.identifier.doi10.1023/B:NODY.0000013510.13416.2e-
dc.identifier.wosWOS:000188456400006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofNonlinear Dynamics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.