Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24811Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dantas, M. J. | - |
| dc.contributor.author | Balthazar, José Manoel | - |
| dc.date.accessioned | 2014-02-26T17:25:19Z | - |
| dc.date.accessioned | 2014-05-20T14:16:02Z | - |
| dc.date.accessioned | 2016-10-25T17:39:13Z | - |
| dc.date.available | 2014-02-26T17:25:19Z | - |
| dc.date.available | 2014-05-20T14:16:02Z | - |
| dc.date.available | 2016-10-25T17:39:13Z | - |
| dc.date.issued | 2006-04-01 | - |
| dc.identifier | http://dx.doi.org/10.1142/S0218127406015349 | - |
| dc.identifier.citation | International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 16, n. 4, p. 1083-1088, 2006. | - |
| dc.identifier.issn | 0218-1274 | - |
| dc.identifier.uri | http://hdl.handle.net/11449/24811 | - |
| dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24811 | - |
| dc.description.abstract | This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves). | en |
| dc.format.extent | 1083-1088 | - |
| dc.language.iso | eng | - |
| dc.publisher | World Scientific Publ Co Pte Ltd | - |
| dc.source | Web of Science | - |
| dc.subject | chaos | pt |
| dc.subject | nonideal problem | pt |
| dc.subject | Melnikov's method | pt |
| dc.subject | Hopf bifurcation | pt |
| dc.subject | center manifolds | pt |
| dc.title | A comment on a nonideal centrifugal vibrator machine behavior with soft and hard springs | en |
| dc.type | outro | - |
| dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | - |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
| dc.description.affiliation | UFU, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil | - |
| dc.description.affiliation | UNESP, Dept Estatist Matemat Aplicada & Computacao, Inst Geociencias & Ciências Exatas, BR-13500230 Rio Claro, SP, Brazil | - |
| dc.description.affiliationUnesp | UNESP, Dept Estatist Matemat Aplicada & Computacao, Inst Geociencias & Ciências Exatas, BR-13500230 Rio Claro, SP, Brazil | - |
| dc.identifier.doi | 10.1142/S0218127406015349 | - |
| dc.identifier.wos | WOS:000238496000018 | - |
| dc.rights.accessRights | Acesso restrito | - |
| dc.relation.ispartof | International Journal of Bifurcation and Chaos | - |
| Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp | |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
