You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24842
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarana, A. N.-
dc.contributor.authorCosta, L. F.-
dc.contributor.authorLotufo, R. A.-
dc.contributor.authorVelastin, S. A.-
dc.contributor.authorCosta, LDF-
dc.contributor.authorCamara, G.-
dc.date.accessioned2014-02-26T17:19:30Z-
dc.date.accessioned2014-05-20T14:16:06Z-
dc.date.accessioned2016-10-25T17:39:16Z-
dc.date.available2014-02-26T17:19:30Z-
dc.date.available2014-05-20T14:16:06Z-
dc.date.available2016-10-25T17:39:16Z-
dc.date.issued1998-01-01-
dc.identifierhttp://dx.doi.org/10.1109/SIBGRA.1998.722773-
dc.identifier.citationSibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998.-
dc.identifier.urihttp://hdl.handle.net/11449/24842-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24842-
dc.description.abstractThe goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.en
dc.format.extent354-361-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE), Computer Soc-
dc.sourceWeb of Science-
dc.subjectcrowd monitoringpt
dc.subjecttexture analysispt
dc.titleOn the efficacy of texture analysis for crowd monitoringen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, DEMACIGCE, Rio Claro, SP, Brazil-
dc.description.affiliationUnespUNESP, DEMACIGCE, Rio Claro, SP, Brazil-
dc.identifier.doi10.1109/SIBGRA.1998.722773-
dc.identifier.wosWOS:000076805000047-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofSibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.