You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24849
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPiccirillo, V.-
dc.contributor.authorBalthazar, José Manoel-
dc.contributor.authorPontes, B. R.-
dc.contributor.authorFelix, J. L. P.-
dc.date.accessioned2013-09-30T18:10:35Z-
dc.date.accessioned2014-05-20T14:16:07Z-
dc.date.accessioned2016-10-25T17:39:17Z-
dc.date.available2013-09-30T18:10:35Z-
dc.date.available2014-05-20T14:16:07Z-
dc.date.available2016-10-25T17:39:17Z-
dc.date.issued2009-01-01-
dc.identifierhttp://dx.doi.org/10.1007/s11071-008-9350-6-
dc.identifier.citationNonlinear Dynamics. Dordrecht: Springer, v. 55, n. 1-2, p. 139-149, 2009.-
dc.identifier.issn0924-090X-
dc.identifier.urihttp://hdl.handle.net/11449/24849-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24849-
dc.description.abstractIn this paper, an optimal linear control is applied to control a chaotic oscillator with shape memory alloy (SMA). Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. This work is presented in two parts. Part I considers the so-called ideal problem. In the ideal problem, the excitation source is assumed to be an ideal harmonic excitation.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent139-149-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectChaos controlen
dc.subjectShape memory alloyen
dc.subjectNonlinear dynamicen
dc.subjectLinear feedback controlen
dc.titleChaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: Part I: Ideal energy sourceen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, Dept Engn Mech, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUNESP, Dept Stat Appl Math & Computat, BR-13500230 Bauru, SP, Brazil-
dc.description.affiliationUnespUNESP, Dept Engn Mech, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespUNESP, Dept Stat Appl Math & Computat, BR-13500230 Bauru, SP, Brazil-
dc.identifier.doi10.1007/s11071-008-9350-6-
dc.identifier.wosWOS:000262088500010-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofNonlinear Dynamics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.