You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Diego F. M.-
dc.contributor.authorRobnik, Marko-
dc.contributor.authorLeonel, Edson Denis-
dc.date.accessioned2013-09-30T18:50:22Z-
dc.date.accessioned2014-05-20T14:16:16Z-
dc.date.accessioned2016-10-25T17:39:24Z-
dc.date.available2013-09-30T18:50:22Z-
dc.date.available2014-05-20T14:16:16Z-
dc.date.available2016-10-25T17:39:24Z-
dc.date.issued2012-01-16-
dc.identifierhttp://dx.doi.org/10.1016/j.physleta.2011.12.031-
dc.identifier.citationPhysics Letters A. Amsterdam: Elsevier B.V., v. 376, n. 5, p. 723-728, 2012.-
dc.identifier.issn0375-9601-
dc.identifier.urihttp://hdl.handle.net/11449/24892-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24892-
dc.description.abstractA new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipAd futura Foundation-
dc.description.sponsorshipSlovenian Research Agency (ARRS)-
dc.description.sponsorshipCenter for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP)-
dc.format.extent723-728-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectScalingen
dc.subjectStandard mapen
dc.subjectDissipationen
dc.titleStatistical properties of a dissipative kicked system: Critical exponents and scaling invarianceen
dc.typeoutro-
dc.contributor.institutionUniv Maribor-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Maribor, CAMTP Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Estat Matemat Aplicada & Comp, BR-13506900 Rio Claro, SP, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Estat Matemat Aplicada & Comp, BR-13506900 Rio Claro, SP, Brazil-
dc.identifier.doi10.1016/j.physleta.2011.12.031-
dc.identifier.wosWOS:000301036000012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysics Letters A-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.