You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTavares, Danila F.-
dc.contributor.authorLeonel, Edson Denis-
dc.contributor.authorCosta Filho, R. N.-
dc.date.accessioned2013-09-30T18:50:28Z-
dc.date.accessioned2014-05-20T14:16:20Z-
dc.date.accessioned2016-10-25T17:39:27Z-
dc.date.available2013-09-30T18:50:28Z-
dc.date.available2014-05-20T14:16:20Z-
dc.date.available2016-10-25T17:39:27Z-
dc.date.issued2012-11-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2012.06.044-
dc.identifier.citationPhysica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 391, n. 22, p. 5366-5374, 2012.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/24917-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24917-
dc.description.abstractSome dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.en
dc.description.sponsorshipCenter for Scientific Computing (NCC/GridUNESP) of São Paulo State University (UNESP)-
dc.format.extent5366-5374-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectFermi accelerator modelen
dc.subjectDamping forcesen
dc.titleNon-uniform drag force on the Fermi accelerator modelen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do Ceará (UFC)-
dc.contributor.institutionUniv Integracao Int Lusofonia Afro Brasileira UNI-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal do Ceará (UFC), Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil-
dc.description.affiliationUniv Integracao Int Lusofonia Afro Brasileira UNI, Redencao, CE, Brazil-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Estatist Matemat Aplicada & Computacao, BR-13506900 Rio Claro, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Estatist Matemat Aplicada & Computacao, BR-13506900 Rio Claro, SP, Brazil-
dc.identifier.doi10.1016/j.physa.2012.06.044-
dc.identifier.wosWOS:000308050000008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.