You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24925
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuilherme, Ivan R.-
dc.contributor.authorMarana, Aparecido N.-
dc.contributor.authorPapa, Joao P.-
dc.contributor.authorChiachia, Giovani-
dc.contributor.authorAfonso, Luis C. S.-
dc.contributor.authorMiura, Kazuo-
dc.contributor.authorFerreira, Marcus V. D.-
dc.contributor.authorTorres, Francisco-
dc.date.accessioned2013-09-30T18:50:30Z-
dc.date.accessioned2014-05-20T14:16:21Z-
dc.date.accessioned2016-10-25T17:39:28Z-
dc.date.available2013-09-30T18:50:30Z-
dc.date.available2014-05-20T14:16:21Z-
dc.date.available2016-10-25T17:39:28Z-
dc.date.issued2011-02-01-
dc.identifierhttp://dx.doi.org/10.1016/j.engappai.2010.04.002-
dc.identifier.citationEngineering Applications of Artificial Intelligence. Oxford: Pergamon-Elsevier B.V. Ltd, v. 24, n. 1, p. 201-207, 2011.-
dc.identifier.issn0952-1976-
dc.identifier.urihttp://hdl.handle.net/11449/24925-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24925-
dc.description.abstractPetroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.en
dc.format.extent201-207-
dc.language.isoeng-
dc.publisherPergamon-Elsevier B.V. Ltd-
dc.sourceWeb of Science-
dc.subjectPetroleum well drillingen
dc.subjectOptimum-path foresten
dc.subjectApplied artificial intelligenceen
dc.subjectSupport vector machinesen
dc.subjectArtificial Neural Networksen
dc.titlePetroleum well drilling monitoring through cutting image analysis and artificial intelligence techniquesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionBrazilian Petr PETROBRAS-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Stat Appl Math & Computat, Rio Claro, Brazil-
dc.description.affiliationBrazilian Petr PETROBRAS, Leopoldo Americo Miguez de Mello Res & Dev Ctr CE, Maceio, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Stat Appl Math & Computat, Rio Claro, Brazil-
dc.identifier.doi10.1016/j.engappai.2010.04.002-
dc.identifier.wosWOS:000287066400019-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofEngineering Applications of Artificial Intelligence-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.