Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24934
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rafikov, Marat | - |
dc.contributor.author | Balthazar, José Manoel | - |
dc.date.accessioned | 2013-09-30T18:50:33Z | - |
dc.date.accessioned | 2014-05-20T14:16:23Z | - |
dc.date.accessioned | 2016-10-25T17:39:29Z | - |
dc.date.available | 2013-09-30T18:50:33Z | - |
dc.date.available | 2014-05-20T14:16:23Z | - |
dc.date.available | 2016-10-25T17:39:29Z | - |
dc.date.issued | 2008-09-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.cnsns.2006.12.011 | - |
dc.identifier.citation | Communications In Nonlinear Science and Numerical Simulation. Amsterdam: Elsevier B.V., v. 13, n. 7, p. 1246-1255, 2008. | - |
dc.identifier.issn | 1007-5704 | - |
dc.identifier.uri | http://hdl.handle.net/11449/24934 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24934 | - |
dc.description.abstract | This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved. | en |
dc.format.extent | 1246-1255 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | chaos control | en |
dc.subject | synchronization | en |
dc.subject | linear feedback control | en |
dc.subject | chaotic and hyperchaotic rossler systems | en |
dc.title | On control and synchronization in chaotic and hyperchaotic systems via linear feedback control | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí) | - |
dc.description.affiliation | Univ Estadual Paulista, BR-13500230 Rio Claro, SP, Brazil | - |
dc.description.affiliation | Univ Reg Noroeste Estado Rio Grande do Sul, BR-98700000 Ijui, RS, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, BR-13500230 Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1016/j.cnsns.2006.12.011 | - |
dc.identifier.wos | WOS:000254602400003 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Communications in Nonlinear Science and Numerical Simulation | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.