Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24936
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rafikov, Marat | - |
dc.contributor.author | Balthazar, José Manoel | - |
dc.contributor.author | Tusset, Angelo Marcelo | - |
dc.date.accessioned | 2013-09-30T18:50:33Z | - |
dc.date.accessioned | 2014-05-20T14:16:23Z | - |
dc.date.accessioned | 2016-10-25T17:39:29Z | - |
dc.date.available | 2013-09-30T18:50:33Z | - |
dc.date.available | 2014-05-20T14:16:23Z | - |
dc.date.available | 2016-10-25T17:39:29Z | - |
dc.date.issued | 2008-10-01 | - |
dc.identifier | http://dx.doi.org/10.1590/S1678-58782008000400002 | - |
dc.identifier.citation | Journal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 30, n. 4, p. 279-284, 2008. | - |
dc.identifier.issn | 1678-5878 | - |
dc.identifier.uri | http://hdl.handle.net/11449/24936 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/24936 | - |
dc.description.abstract | This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 279-284 | - |
dc.language.iso | eng | - |
dc.publisher | Abcm Brazilian Soc Mechanical Sciences & Engineering | - |
dc.source | Web of Science | - |
dc.subject | optimal control | en |
dc.subject | nonlinear system | en |
dc.subject | duffing oscillator | en |
dc.subject | active suspension system | en |
dc.subject | chaotic attractor | en |
dc.title | An Optimal Linear Control Design for Nonlinear Systems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do ABC (UFABC) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí) | - |
dc.contributor.institution | Universidade do Contestado (UnC) | - |
dc.description.affiliation | UFABC, Dep Fis Estatist & Matemat, BR-98700000 Ijui, RS, Brazil | - |
dc.description.affiliation | UNESP, Dep Estatist Matemat Apli & Comp, BR-13500230 Rio Claro, SP, Brazil | - |
dc.description.affiliation | Univ Reg Noroeste Estado Rio Grande do Sul, Dep Fis Estatist & Matemat, BR-98700000 Ijui, RS, Brazil | - |
dc.description.affiliation | UnC, Dept Ciência Comp, BR-89460000 Canoinhas, SC, Brazil | - |
dc.description.affiliationUnesp | UNESP, Dep Estatist Matemat Apli & Comp, BR-13500230 Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1590/S1678-58782008000400002 | - |
dc.identifier.scielo | S1678-58782008000400002 | - |
dc.identifier.wos | WOS:000265311000002 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.relation.ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.