You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRafikov, Marat-
dc.contributor.authorBalthazar, José Manoel-
dc.contributor.authorTusset, Angelo Marcelo-
dc.date.accessioned2013-09-30T18:50:33Z-
dc.date.accessioned2014-05-20T14:16:23Z-
dc.date.accessioned2016-10-25T17:39:29Z-
dc.date.available2013-09-30T18:50:33Z-
dc.date.available2014-05-20T14:16:23Z-
dc.date.available2016-10-25T17:39:29Z-
dc.date.issued2008-10-01-
dc.identifierhttp://dx.doi.org/10.1590/S1678-58782008000400002-
dc.identifier.citationJournal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 30, n. 4, p. 279-284, 2008.-
dc.identifier.issn1678-5878-
dc.identifier.urihttp://hdl.handle.net/11449/24936-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/24936-
dc.description.abstractThis paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent279-284-
dc.language.isoeng-
dc.publisherAbcm Brazilian Soc Mechanical Sciences & Engineering-
dc.sourceWeb of Science-
dc.subjectoptimal controlen
dc.subjectnonlinear systemen
dc.subjectduffing oscillatoren
dc.subjectactive suspension systemen
dc.subjectchaotic attractoren
dc.titleAn Optimal Linear Control Design for Nonlinear Systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí)-
dc.contributor.institutionUniversidade do Contestado (UnC)-
dc.description.affiliationUFABC, Dep Fis Estatist & Matemat, BR-98700000 Ijui, RS, Brazil-
dc.description.affiliationUNESP, Dep Estatist Matemat Apli & Comp, BR-13500230 Rio Claro, SP, Brazil-
dc.description.affiliationUniv Reg Noroeste Estado Rio Grande do Sul, Dep Fis Estatist & Matemat, BR-98700000 Ijui, RS, Brazil-
dc.description.affiliationUnC, Dept Ciência Comp, BR-89460000 Canoinhas, SC, Brazil-
dc.description.affiliationUnespUNESP, Dep Estatist Matemat Apli & Comp, BR-13500230 Rio Claro, SP, Brazil-
dc.identifier.doi10.1590/S1678-58782008000400002-
dc.identifier.scieloS1678-58782008000400002-
dc.identifier.wosWOS:000265311000002-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.