Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/25079
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Queiroz, Joaquim C. B. | - |
dc.contributor.author | Sturaro, Jose R. | - |
dc.contributor.author | Saraiva, Augusto C. F. | - |
dc.contributor.author | Barbosa Landim, Paulo M. | - |
dc.date.accessioned | 2013-09-30T18:51:09Z | - |
dc.date.accessioned | 2014-05-20T14:16:56Z | - |
dc.date.accessioned | 2016-10-25T17:39:43Z | - |
dc.date.available | 2013-09-30T18:51:09Z | - |
dc.date.available | 2014-05-20T14:16:56Z | - |
dc.date.available | 2016-10-25T17:39:43Z | - |
dc.date.issued | 2008-07-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s00254-007-0968-3 | - |
dc.identifier.citation | Environmental Geology. New York: Springer, v. 55, n. 1, p. 95-105, 2008. | - |
dc.identifier.issn | 0943-0105 | - |
dc.identifier.uri | http://hdl.handle.net/11449/25079 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/25079 | - |
dc.description.abstract | This paper describes a geostatistical method, known as factorial kriging analysis, which is well suited for analyzing multivariate spatial information. The method involves multivariate variogram modeling, principal component analysis, and cokriging. It uses several separate correlation structures, each corresponding to a specific spatial scale, and yields a set of regionalized factors summarizing the main features of the data for each spatial scale. This method is applied to an area of high manganese-ore mining activity in Amapa State, North Brazil. Two scales of spatial variation (0.33 and 2.0 km) are identified and interpreted. The results indicate that, for the short-range structure, manganese, arsenic, iron, and cadmium are associated with human activities due to the mining work, while for the long-range structure, the high aluminum, selenium, copper, and lead concentrations, seem to be related to the natural environment. At each scale, the correlation structure is analyzed, and regionalized factors are estimated by cokriging and then mapped. | en |
dc.format.extent | 95-105 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | heavy metal pollution | en |
dc.subject | Amapa State | en |
dc.subject | Brazil | en |
dc.subject | factorial kriging | en |
dc.subject | multivariate geostatistics | en |
dc.title | Geochemical characterization of heavy metal contaminated area using multivariate factorial kriging | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Fed Univ Para | - |
dc.contributor.institution | Cent Lab Eletronorte | - |
dc.description.affiliation | São Paulo State Univ Rio Claro, Dept Appl Geol, São Paulo, Brazil | - |
dc.description.affiliation | Fed Univ Para, Dept Stat, BR-66059 Belem, Para, Brazil | - |
dc.description.affiliation | Cent Lab Eletronorte, Belem, Para, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ Rio Claro, Dept Appl Geol, São Paulo, Brazil | - |
dc.identifier.doi | 10.1007/s00254-007-0968-3 | - |
dc.identifier.wos | WOS:000256473900011 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Environmental Geology | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.