You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25086
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRiedel, Paulina Setti-
dc.contributor.authorGomes, Alessandra Rodrigues-
dc.contributor.authorFerreira, Mateus Vidotti-
dc.contributor.authorSampaio Lopes, Eymar Silva-
dc.contributor.authorSturaro, Jose Ricardo-
dc.date.accessioned2013-09-30T18:51:11Z-
dc.date.accessioned2014-05-20T14:16:58Z-
dc.date.accessioned2016-10-25T17:39:44Z-
dc.date.available2013-09-30T18:51:11Z-
dc.date.available2014-05-20T14:16:58Z-
dc.date.available2016-10-25T17:39:44Z-
dc.date.issued2010-10-01-
dc.identifierhttp://dx.doi.org/10.2747/1548-1603.47.4.498-
dc.identifier.citationGiscience & Remote Sensing. Columbia: Bellwether Publ Ltd, v. 47, n. 4, p. 498-513, 2010.-
dc.identifier.issn1548-1603-
dc.identifier.urihttp://hdl.handle.net/11449/25086-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25086-
dc.description.abstractThe objective of the present study, developed in a mountainous region in Brazil where many landslides occur, is to present a method for detecting landslide scars that couples image processing techniques with spatial analysis tools. An IKONOS image was initially segmented, and then classified through a Batthacharrya classifier, with an acceptance limit of 99%, resulting in 216 polygons identified with a spectral response similar to landslide scars. After making use of some spatial analysis tools that took into account a susceptibility map, a map of local drainage channels and highways, and the maximum expected size of scars in the study area, some features misinterpreted as scars were excluded. The 43 resulting features were then compared with visually interpreted landslide scars and field observations. The proposed method can be reproduced and enhanced by adding filtering criteria and was able to find new scars on the image, with a final error rate of 2.3%.en
dc.description.sponsorshipPetrobras-
dc.format.extent498-513-
dc.language.isoeng-
dc.publisherBellwether Publ Ltd-
dc.sourceWeb of Science-
dc.titleIdentification of Landslide Scars in the Region of the Serra do Mar, São Paulo State, Brazil, Using Digital Image Processing and Spatial Analysis Toolsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)-
dc.description.affiliationSão Paulo State Univ UNESP, Dept Appl Geol, BR-13506900 Bela Vista Rio Claro, SP, Brazil-
dc.description.affiliationSão Paulo State Univ UNESP, Postgrad Program Geosci & Environm Studies, BR-13506900 Bela Vista Rio Claro, SP, Brazil-
dc.description.affiliationNatl Inst Spatial Res INPE, Image Proc Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Dept Appl Geol, BR-13506900 Bela Vista Rio Claro, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Postgrad Program Geosci & Environm Studies, BR-13506900 Bela Vista Rio Claro, SP, Brazil-
dc.identifier.doi10.2747/1548-1603.47.4.498-
dc.identifier.wosWOS:000285536500004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofGiscience & Remote Sensing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.