You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25105
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFukui, T.-
dc.contributor.authorBallesteros, JJN-
dc.contributor.authorSaia, M. J.-
dc.date.accessioned2014-02-26T17:01:52Z-
dc.date.accessioned2014-05-20T14:17:02Z-
dc.date.accessioned2016-10-25T17:39:45Z-
dc.date.available2014-02-26T17:01:52Z-
dc.date.available2014-05-20T14:17:02Z-
dc.date.available2016-10-25T17:39:45Z-
dc.date.issued1998-08-01-
dc.identifierhttp://dx.doi.org/10.1112/S0024610798006413-
dc.identifier.citationJournal of the London Mathematical Society-second Series. Oxford: Oxford Univ Press, v. 58, p. 141-152, 1998.-
dc.identifier.issn0024-6107-
dc.identifier.urihttp://hdl.handle.net/11449/25105-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25105-
dc.description.abstractLet f:C-n, 0 --> C-p, 0 be a K-finite map germ, and let i = (i(1),..., i(k)) be a Boardman symbol such that Sigma(i) has codimension n in the corresponding jet space J(k)(n, p). When its iterated successors have codimension larger than n, the paper gives a list of situations in which the number of Sigma(i) points that appear in a generic deformation of f can be computed algebraically by means of Jacobian ideals of f. This list can be summarised in the following way: f must have rank n - i(1) and, in addition, in the case p = 6, f must be a singularity of type Sigma(i2.i2).en
dc.format.extent141-152-
dc.language.isoeng-
dc.publisherOxford University Press-
dc.sourceWeb of Science-
dc.titleOn the number of singularities in generic deformations of map germsen
dc.typeoutro-
dc.contributor.institutionSaitama Univ-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Valencia-
dc.description.affiliationSaitama Univ, Fac Sci, Dept Math, Urawa, Saitama 338, Japan-
dc.description.affiliationUNESP, IGCE, Dept Matemat, BR-13500230 Rio Claro, SP, Brazil-
dc.description.affiliationUniv Valencia, Dept Geometria & Topol, Burjassot 46100, Spain-
dc.description.affiliationUnespUNESP, IGCE, Dept Matemat, BR-13500230 Rio Claro, SP, Brazil-
dc.identifier.doi10.1112/S0024610798006413-
dc.identifier.wosWOS:000080498100012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of the London Mathematical Society-second Series-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.