You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25107
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBruschi, S. M.-
dc.contributor.authorCarvalho, A. N.-
dc.contributor.authorCholewa, J. W.-
dc.contributor.authorDlotko, Tornasz-
dc.date.accessioned2014-02-26T17:26:56Z-
dc.date.accessioned2014-05-20T14:17:03Z-
dc.date.accessioned2016-10-25T17:39:46Z-
dc.date.available2014-02-26T17:26:56Z-
dc.date.available2014-05-20T14:17:03Z-
dc.date.available2016-10-25T17:39:46Z-
dc.date.issued2006-07-01-
dc.identifierhttp://dx.doi.org/10.1007/s10884-006-9023-4-
dc.identifier.citationJournal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006.-
dc.identifier.issn1040-7294-
dc.identifier.urihttp://hdl.handle.net/11449/25107-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25107-
dc.description.abstractFor eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).en
dc.format.extent767-814-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectdamped wave equationpt
dc.subjectstrongly damped wave equationpt
dc.subjectdissipative semigrouppt
dc.subjectglobal attractorpt
dc.subjectuniform exponential dichotomypt
dc.subjectupperpt
dc.subjectsemicontinuitypt
dc.subjectlower semicontinuitypt
dc.titleUniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equationsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionSilesian Univ-
dc.description.affiliationUNESP, Dept Matemat, IGCE, BR-13506700 Rio Claro, SP, Brazil-
dc.description.affiliationUniv São Paulo, Dept Matemat, Inst Ciências Matemat & Computac, BR-13560970 Sao Carlos, SP, Brazil-
dc.description.affiliationSilesian Univ, Inst Math, PL-40007 Katowice, Poland-
dc.description.affiliationUnespUNESP, Dept Matemat, IGCE, BR-13506700 Rio Claro, SP, Brazil-
dc.identifier.doi10.1007/s10884-006-9023-4-
dc.identifier.wosWOS:000241394900009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Dynamics and Differential Equations-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.