Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/25107
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bruschi, S. M. | - |
dc.contributor.author | Carvalho, A. N. | - |
dc.contributor.author | Cholewa, J. W. | - |
dc.contributor.author | Dlotko, Tornasz | - |
dc.date.accessioned | 2014-02-26T17:26:56Z | - |
dc.date.accessioned | 2014-05-20T14:17:03Z | - |
dc.date.accessioned | 2016-10-25T17:39:46Z | - |
dc.date.available | 2014-02-26T17:26:56Z | - |
dc.date.available | 2014-05-20T14:17:03Z | - |
dc.date.available | 2016-10-25T17:39:46Z | - |
dc.date.issued | 2006-07-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s10884-006-9023-4 | - |
dc.identifier.citation | Journal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006. | - |
dc.identifier.issn | 1040-7294 | - |
dc.identifier.uri | http://hdl.handle.net/11449/25107 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/25107 | - |
dc.description.abstract | For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+). | en |
dc.format.extent | 767-814 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | damped wave equation | pt |
dc.subject | strongly damped wave equation | pt |
dc.subject | dissipative semigroup | pt |
dc.subject | global attractor | pt |
dc.subject | uniform exponential dichotomy | pt |
dc.subject | upper | pt |
dc.subject | semicontinuity | pt |
dc.subject | lower semicontinuity | pt |
dc.title | Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Silesian Univ | - |
dc.description.affiliation | UNESP, Dept Matemat, IGCE, BR-13506700 Rio Claro, SP, Brazil | - |
dc.description.affiliation | Univ São Paulo, Dept Matemat, Inst Ciências Matemat & Computac, BR-13560970 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | Silesian Univ, Inst Math, PL-40007 Katowice, Poland | - |
dc.description.affiliationUnesp | UNESP, Dept Matemat, IGCE, BR-13506700 Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1007/s10884-006-9023-4 | - |
dc.identifier.wos | WOS:000241394900009 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Dynamics and Differential Equations | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.