You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25108
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArrieta, Jose M.-
dc.contributor.authorBruschi, Simone M.-
dc.date.accessioned2014-02-26T17:01:46Z-
dc.date.accessioned2014-05-20T14:17:03Z-
dc.date.accessioned2016-10-25T17:39:46Z-
dc.date.available2014-02-26T17:01:46Z-
dc.date.available2014-05-20T14:17:03Z-
dc.date.available2016-10-25T17:39:46Z-
dc.date.issued2007-10-01-
dc.identifierhttp://dx.doi.org/10.1142/S0218202507002388-
dc.identifier.citationMathematical Models & Methods In Applied Sciences. Singapore: World Scientific Publ Co Pte Ltd, v. 17, n. 10, p. 1555-1585, 2007.-
dc.identifier.issn0218-2025-
dc.identifier.urihttp://hdl.handle.net/11449/25108-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25108-
dc.description.abstractWe analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.en
dc.format.extent1555-1585-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectvarying boundarypt
dc.subjectoscillationspt
dc.subjectnonlinear boundary conditionspt
dc.subjectelliptic equationspt
dc.titleRapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformationen
dc.typeoutro-
dc.contributor.institutionUniv Complutense-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Complutense, Dept Matemat Aplicada, E-28040 Madrid, Spain-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil-
dc.identifier.doi10.1142/S0218202507002388-
dc.identifier.wosWOS:000251742500004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMathematical Models & Methods In Applied Sciences-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.