Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/25108
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arrieta, Jose M. | - |
dc.contributor.author | Bruschi, Simone M. | - |
dc.date.accessioned | 2014-02-26T17:01:46Z | - |
dc.date.accessioned | 2014-05-20T14:17:03Z | - |
dc.date.accessioned | 2016-10-25T17:39:46Z | - |
dc.date.available | 2014-02-26T17:01:46Z | - |
dc.date.available | 2014-05-20T14:17:03Z | - |
dc.date.available | 2016-10-25T17:39:46Z | - |
dc.date.issued | 2007-10-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S0218202507002388 | - |
dc.identifier.citation | Mathematical Models & Methods In Applied Sciences. Singapore: World Scientific Publ Co Pte Ltd, v. 17, n. 10, p. 1555-1585, 2007. | - |
dc.identifier.issn | 0218-2025 | - |
dc.identifier.uri | http://hdl.handle.net/11449/25108 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/25108 | - |
dc.description.abstract | We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby. | en |
dc.format.extent | 1555-1585 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.subject | varying boundary | pt |
dc.subject | oscillations | pt |
dc.subject | nonlinear boundary conditions | pt |
dc.subject | elliptic equations | pt |
dc.title | Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation | en |
dc.type | outro | - |
dc.contributor.institution | Univ Complutense | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Complutense, Dept Matemat Aplicada, E-28040 Madrid, Spain | - |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1142/S0218202507002388 | - |
dc.identifier.wos | WOS:000251742500004 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Mathematical Models & Methods In Applied Sciences | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.