You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoncalves, D. L.-
dc.contributor.authorPenteado, D.-
dc.contributor.authorVieira, João Peres-
dc.date.accessioned2013-09-30T18:51:17Z-
dc.date.accessioned2014-05-20T14:17:06Z-
dc.date.accessioned2016-10-25T17:39:48Z-
dc.date.available2013-09-30T18:51:17Z-
dc.date.available2014-05-20T14:17:06Z-
dc.date.available2016-10-25T17:39:48Z-
dc.date.issued2010-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2010.02.025-
dc.identifier.citationTopology and Its Applications. Amsterdam: Elsevier B.V., v. 157, n. 10-11, p. 1760-1769, 2010.-
dc.identifier.issn0166-8641-
dc.identifier.urihttp://hdl.handle.net/11449/25125-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25125-
dc.description.abstractIn this note we study coincidence of pairs of fiber-preserving maps f, g : E-1 -> E-2 where E-1, E-2 are S-n-bundles over a space B. We will show that for each homotopy class vertical bar f vertical bar of fiber-preserving maps over B, there is only one homotopy class vertical bar g vertical bar such that the pair (f, g), where vertical bar g vertical bar = vertical bar tau circle f vertical bar can be deformed to a coincidence free pair. Here tau : E-2 -> E-2 is a fiber-preserving map which is fixed point free. In the case where the base is S-1 we classify the bundles, the homotopy classes of maps over S-1 and the pairs which can be deformed to coincidence free. At the end we discuss the self-coincidence problem. (C) 2010 Elsevier B.V. All rights reserved.en
dc.format.extent1760-1769-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectFixed pointen
dc.subjectFiber bundleen
dc.subjectFiberwise homotopyen
dc.subjectCoincidence theoryen
dc.subjectSpherical bundleen
dc.titleCoincidence points of fiber maps on S-n-bundlesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationIME USP, Dept Matemat, BR-05314970 São Paulo, Brazil-
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), Dept Matemat, BR-13365905 São Carlos, SP, Brazil-
dc.description.affiliationIGCE UNESP, Dept Matemat, BR-13506900 Rio Claro, Brazil-
dc.description.affiliationUnespIGCE UNESP, Dept Matemat, BR-13506900 Rio Claro, Brazil-
dc.identifier.doi10.1016/j.topol.2010.02.025-
dc.identifier.wosWOS:000278600900005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofTopology and its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.