Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/25126
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arrieta, Jose M. | - |
dc.contributor.author | Bruschi, Simone M. | - |
dc.date.accessioned | 2013-09-30T18:51:18Z | - |
dc.date.accessioned | 2014-05-20T14:17:06Z | - |
dc.date.accessioned | 2016-10-25T17:39:48Z | - |
dc.date.available | 2013-09-30T18:51:18Z | - |
dc.date.available | 2014-05-20T14:17:06Z | - |
dc.date.available | 2016-10-25T17:39:48Z | - |
dc.date.issued | 2010-09-01 | - |
dc.identifier | http://dx.doi.org/10.3934/dcdsb.2010.14.327 | - |
dc.identifier.citation | Discrete and Continuous Dynamical Systems-series B. Springfield: Amer Inst Mathematical Sciences, v. 14, n. 2, p. 327-351, 2010. | - |
dc.identifier.issn | 1531-3492 | - |
dc.identifier.uri | http://hdl.handle.net/11449/25126 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/25126 | - |
dc.description.abstract | We continue the analysis started in [3] and announced in [2], studying the behavior of solutions of nonlinear elliptic equations Delta u + f(x, u) = 0 in Omega(epsilon) with nonlinear boundary conditions of type partial derivative u/partial derivative n + g(x, u) = 0, when the boundary of the domain varies very rapidly. We show that if the oscillations are very rapid, in the sense that, roughly speaking, its period is much smaller than its amplitude and the function g is of a dissipative type, that is, it satisfies g(x, u)u >= b vertical bar u vertical bar(d+1), then the boundary condition in the limit problem is u = 0, that is, we obtain a homogeneus Dirichlet boundary condition. We show the convergence of solutions in H(1) and C(0) norms and the convergence of the eigenvalues and eigenfunctions of the linearizations around the solutions. Moreover, if a solution of the limit problem is hyperbolic (non degenerate) and some extra conditions in g are satisfied, then we show that there exists one and only one solution of the perturbed problem nearby. | en |
dc.description.sponsorship | MICINN | - |
dc.description.sponsorship | DGES, Spain | - |
dc.description.sponsorship | BSCH-UCM, Spain | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 327-351 | - |
dc.language.iso | eng | - |
dc.publisher | Amer Inst Mathematical Sciences | - |
dc.source | Web of Science | - |
dc.subject | Varying boundary | en |
dc.subject | oscillations | en |
dc.subject | nonlinear boundary conditions | en |
dc.subject | elliptic equations | en |
dc.title | VERY RAPIDLY VARYING BOUNDARIES IN EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS. THE CASE of A NON UNIFORMLY LIPSCHITZ DEFORMATION | en |
dc.type | outro | - |
dc.contributor.institution | Univ Complutense Madrid | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain | - |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil | - |
dc.description.sponsorshipId | MICINN: PHB2006-003 PC | - |
dc.description.sponsorshipId | MICINN: PR2009-0027 | - |
dc.description.sponsorshipId | DGES, Spain: MTM 2006 08262 | - |
dc.description.sponsorshipId | DGES, Spain: MTM2009-07540 | - |
dc.description.sponsorshipId | DGES, Spain: MTM2006-08262 | - |
dc.description.sponsorshipId | BSCH-UCM, Spain: GR58/08 | - |
dc.description.sponsorshipId | BSCH-UCM, Spain: Grupo 920894 | - |
dc.description.sponsorshipId | FAPESP: 04/06020-4 | - |
dc.identifier.doi | 10.3934/dcdsb.2010.14.327 | - |
dc.identifier.wos | WOS:000278676200003 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems: Series B | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.