You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArrieta, Jose M.-
dc.contributor.authorBruschi, Simone M.-
dc.date.accessioned2013-09-30T18:51:18Z-
dc.date.accessioned2014-05-20T14:17:06Z-
dc.date.accessioned2016-10-25T17:39:48Z-
dc.date.available2013-09-30T18:51:18Z-
dc.date.available2014-05-20T14:17:06Z-
dc.date.available2016-10-25T17:39:48Z-
dc.date.issued2010-09-01-
dc.identifierhttp://dx.doi.org/10.3934/dcdsb.2010.14.327-
dc.identifier.citationDiscrete and Continuous Dynamical Systems-series B. Springfield: Amer Inst Mathematical Sciences, v. 14, n. 2, p. 327-351, 2010.-
dc.identifier.issn1531-3492-
dc.identifier.urihttp://hdl.handle.net/11449/25126-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25126-
dc.description.abstractWe continue the analysis started in [3] and announced in [2], studying the behavior of solutions of nonlinear elliptic equations Delta u + f(x, u) = 0 in Omega(epsilon) with nonlinear boundary conditions of type partial derivative u/partial derivative n + g(x, u) = 0, when the boundary of the domain varies very rapidly. We show that if the oscillations are very rapid, in the sense that, roughly speaking, its period is much smaller than its amplitude and the function g is of a dissipative type, that is, it satisfies g(x, u)u >= b vertical bar u vertical bar(d+1), then the boundary condition in the limit problem is u = 0, that is, we obtain a homogeneus Dirichlet boundary condition. We show the convergence of solutions in H(1) and C(0) norms and the convergence of the eigenvalues and eigenfunctions of the linearizations around the solutions. Moreover, if a solution of the limit problem is hyperbolic (non degenerate) and some extra conditions in g are satisfied, then we show that there exists one and only one solution of the perturbed problem nearby.en
dc.description.sponsorshipMICINN-
dc.description.sponsorshipDGES, Spain-
dc.description.sponsorshipBSCH-UCM, Spain-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent327-351-
dc.language.isoeng-
dc.publisherAmer Inst Mathematical Sciences-
dc.sourceWeb of Science-
dc.subjectVarying boundaryen
dc.subjectoscillationsen
dc.subjectnonlinear boundary conditionsen
dc.subjectelliptic equationsen
dc.titleVERY RAPIDLY VARYING BOUNDARIES IN EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS. THE CASE of A NON UNIFORMLY LIPSCHITZ DEFORMATIONen
dc.typeoutro-
dc.contributor.institutionUniv Complutense Madrid-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat, Rio Claro, SP, Brazil-
dc.description.sponsorshipIdMICINN: PHB2006-003 PC-
dc.description.sponsorshipIdMICINN: PR2009-0027-
dc.description.sponsorshipIdDGES, Spain: MTM 2006 08262-
dc.description.sponsorshipIdDGES, Spain: MTM2009-07540-
dc.description.sponsorshipIdDGES, Spain: MTM2006-08262-
dc.description.sponsorshipIdBSCH-UCM, Spain: GR58/08-
dc.description.sponsorshipIdBSCH-UCM, Spain: Grupo 920894-
dc.description.sponsorshipIdFAPESP: 04/06020-4-
dc.identifier.doi10.3934/dcdsb.2010.14.327-
dc.identifier.wosWOS:000278676200003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofDiscrete and Continuous Dynamical Systems: Series B-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.