You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25128
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoncalves, Daciberg Lima-
dc.contributor.authorPenteado, Dirceu-
dc.contributor.authorVieira, João Peres-
dc.date.accessioned2013-09-30T18:51:18Z-
dc.date.accessioned2014-05-20T14:17:07Z-
dc.date.accessioned2016-10-25T17:39:48Z-
dc.date.available2013-09-30T18:51:18Z-
dc.date.available2014-05-20T14:17:07Z-
dc.date.available2016-10-25T17:39:48Z-
dc.date.issued2009-06-01-
dc.identifierhttp://www.tmna.ncu.pl/htmls/archives/vol-33-2.html-
dc.identifier.citationTopological Methods In Nonlinear Analysis. Torun: Juliusz Schauder Ctr Nonlinear Studies, v. 33, n. 2, p. 293-305, 2009.-
dc.identifier.issn1230-3429-
dc.identifier.urihttp://hdl.handle.net/11449/25128-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25128-
dc.description.abstractLet f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.en
dc.format.extent293-305-
dc.language.isoeng-
dc.publisherJuliusz Schauder Ctr Nonlinear Studies-
dc.sourceWeb of Science-
dc.subjectFixed pointen
dc.subjectfiber bundleen
dc.subjectfiberwise homotopyen
dc.subjectabelianized obstructionen
dc.titleAbelianized obstruction for fixed points of fiber-preserving maps of surface bundlesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Dept Matemat, IME, BR-05311970 São Paulo, Brazil-
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), Dept Matemat, BR-13565905 São Carlos, SP, Brazil-
dc.description.affiliationUNESP, Dept Matemat, IGCE, BR-13500230 Rio Claro, Brazil-
dc.description.affiliationUnespUNESP, Dept Matemat, IGCE, BR-13500230 Rio Claro, Brazil-
dc.identifier.wosWOS:000267048300006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofTopological Methods in Nonlinear Analysis-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.