You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Melo, T.-
dc.contributor.authorHartmann, L.-
dc.contributor.authorSpreafico, M.-
dc.date.accessioned2013-09-30T18:51:19Z-
dc.date.accessioned2014-05-20T14:17:07Z-
dc.date.accessioned2016-10-25T17:39:49Z-
dc.date.available2013-09-30T18:51:19Z-
dc.date.available2014-05-20T14:17:07Z-
dc.date.available2016-10-25T17:39:49Z-
dc.date.issued2012-06-01-
dc.identifierhttp://dx.doi.org/10.1007/s10455-011-9300-2-
dc.identifier.citationAnnals of Global Analysis and Geometry. Dordrecht: Springer, v. 42, n. 1, p. 29-59, 2012.-
dc.identifier.issn0232-704X-
dc.identifier.urihttp://hdl.handle.net/11449/25133-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25133-
dc.description.abstractIn this article, we study the Reidemeister torsion and the analytic torsion of the m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145-210, 1971). We prove that the Reidemeister torsion coincides with a power of the volume of the disc. We study the additional terms arising in the analytic torsion due to the boundary, using generalizations of the Cheeger-Muller theorem. We use a formula proved by Bruning and Ma (GAFA 16:767-873, 2006) that predicts a new anomaly boundary term beside the known term proportional to the Euler characteristic of the boundary (Luck, J Diff Geom 37:263-322, 1993). Some of our results extend to the case of the cone over a sphere, in particular we evaluate directly the analytic torsion for a cone over the circle and over the two sphere. We compare the results obtained in the low dimensional cases. We also consider a different formula for the boundary term given by Dai and Fang (Asian J Math 4:695-714, 2000), and we compare the results. The results of these work were announced in the study of Hartmann et al. (BUMI 2:529-533, 2009).en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent29-59-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectAnalytic torsionen
dc.subjectReidemeister torsionen
dc.subjectFunctional determinanten
dc.titleThe analytic torsion of a discen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUniv São Paulo, ICMC, São Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Rio Claro, Brazil-
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), UFSCar, BR-13560 São Carlos, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Rio Claro, Brazil-
dc.description.sponsorshipIdFAPESP: 10/16660-1-
dc.description.sponsorshipIdFAPESP: 08/57607-6-
dc.identifier.doi10.1007/s10455-011-9300-2-
dc.identifier.wosWOS:000303345300002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofAnnals of Global Analysis and Geometry-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.