You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiasi, Carlos-
dc.contributor.authorLibardi, Alice Kimie Miwa-
dc.date.accessioned2013-09-30T18:51:20Z-
dc.date.accessioned2014-05-20T14:17:08Z-
dc.date.accessioned2016-10-25T17:39:49Z-
dc.date.available2013-09-30T18:51:20Z-
dc.date.available2014-05-20T14:17:08Z-
dc.date.available2016-10-25T17:39:49Z-
dc.date.issued2008-08-01-
dc.identifierhttp://dx.doi.org/10.1007/s00229-008-0193-8-
dc.identifier.citationManuscripta Mathematica. New York: Springer, v. 126, n. 4, p. 527-530, 2008.-
dc.identifier.issn0025-2611-
dc.identifier.urihttp://hdl.handle.net/11449/25138-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/25138-
dc.description.abstractLet us consider M a closed smooth connected m-manifold, N a smooth ( 2m-2)-manifold and f: M -> N a continuous map, with m equivalent to 1( 4). We prove that if f*: H(1)(M; Z(2)) -> H(1)(f(M); Z(2)) is injective, then f is homotopic to an immersion. Also we give conditions to a map between manifolds of codimension one to be homotopic to an immersion. This work complements some results of Biasi et al. (Manu. Math. 104, 97-110, 2001; Koschorke in The singularity method and immersions of m-manifolds into manifolds of dimensions 2m-2, 2m-3 and 2m-4. Lecture Notes in Mathematics, vol. 1350. Springer, Heidelberg, 1988; Li and Li in Math. Proc. Camb. Phil. Soc. 112, 281-285, 1992).en
dc.format.extent527-530-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.titleOn codimensions k immersions of m-manifolds for k=1 and k=m-2en
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUSP, ICMC, BR-13560970 São Carlos, Brazil-
dc.description.affiliationUNESP, IGCE, BR-13500230 Rio Claro, SP, Brazil-
dc.description.affiliationUnespUNESP, IGCE, BR-13500230 Rio Claro, SP, Brazil-
dc.identifier.doi10.1007/s00229-008-0193-8-
dc.identifier.wosWOS:000257751200006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofManuscripta Mathematica-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.