Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/25843
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Capela, Jorge Manual Vieira | - |
dc.contributor.author | Capela, Marisa Veiga | - |
dc.contributor.author | Ribeiro, Clovis Augusto | - |
dc.date.accessioned | 2014-05-20T14:19:22Z | - |
dc.date.accessioned | 2016-10-25T17:41:02Z | - |
dc.date.available | 2014-05-20T14:19:22Z | - |
dc.date.available | 2016-10-25T17:41:02Z | - |
dc.date.issued | 2009-03-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s10910-008-9381-8 | - |
dc.identifier.citation | Journal of Mathematical Chemistry. New York: Springer, v. 45, n. 3, p. 769-775, 2009. | - |
dc.identifier.issn | 0259-9791 | - |
dc.identifier.uri | http://hdl.handle.net/11449/25843 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/25843 | - |
dc.description.abstract | The aim of this work is to find approaches for the Arrhenius integral by using the n-th convergent of the Jacobi fractions. The n-th convergent is a rational function whose numerator and denominator are polynomials which can be easily computed from three-term recurrence relations. It is noticed that such approaches are equivalent to the one established by the Gauss quadrature formula and it can be seen that the coefficients in the quadrature formula can be given as a function of the coefficients in the recurrence relations. An analysis of the relative error percentages in the approximations is also presented. | en |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 769-775 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | Nonisothermal kinetic | en |
dc.subject | Arrhenius integral | en |
dc.subject | Jacobi fractions | en |
dc.subject | Three-term recurrence relations | en |
dc.subject | Quadrature formula | en |
dc.title | Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Estadual Paulista, Inst Quim, BR-14801970 Araraquara, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Quim, BR-14801970 Araraquara, SP, Brazil | - |
dc.identifier.doi | 10.1007/s10910-008-9381-8 | - |
dc.identifier.wos | WOS:000264485200009 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Mathematical Chemistry | - |
dc.identifier.orcid | 0000-0002-7984-5908 | pt |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.