You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/26012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFlumignan, Danilo Luiz-
dc.contributor.authorBoralle, Nivaldo-
dc.contributor.authorOliveira, Jose Eduardo de-
dc.date.accessioned2014-05-20T14:20:02Z-
dc.date.accessioned2016-10-25T17:41:23Z-
dc.date.available2014-05-20T14:20:02Z-
dc.date.available2016-10-25T17:41:23Z-
dc.date.issued2010-06-30-
dc.identifierhttp://dx.doi.org/10.1016/j.talanta.2010.04.058-
dc.identifier.citationTalanta. Amsterdam: Elsevier B.V., v. 82, n. 1, p. 392-397, 2010.-
dc.identifier.issn0039-9140-
dc.identifier.urihttp://hdl.handle.net/11449/26012-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/26012-
dc.description.abstractIn this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipANP-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent392-397-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectBrazilian commercial gasolineen
dc.subjectQuality controlen
dc.subjectCarbon nuclear magnetic resonanceen
dc.subjectspectroscopic fingerprintingen
dc.subjectPattern-recognition multivariate SIMCAen
dc.subjectANP Regulation 309en
dc.titleCarbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: Pattern-recognition analyses for screening quality control purposesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ UNESP, Ctr Monitoring & Res Qual Fuels Biofuels Crude Oi, Inst Chem, Dept Organ Chem, BR-14800900 São Paulo, Brazil-
dc.description.affiliationSão Paulo State Univ UNESP, Dept Organ Chem, Inst Chem, BR-14800900 São Paulo, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Ctr Monitoring & Res Qual Fuels Biofuels Crude Oi, Inst Chem, Dept Organ Chem, BR-14800900 São Paulo, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Dept Organ Chem, Inst Chem, BR-14800900 São Paulo, Brazil-
dc.identifier.doi10.1016/j.talanta.2010.04.058-
dc.identifier.wosWOS:000279488900056-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofTalanta-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.