You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/26154
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHatanaka, Rafael Rodrigues-
dc.contributor.authorFlumignan, Danilo Luiz-
dc.contributor.authorde Oliveira, Jose Eduardo-
dc.date.accessioned2014-05-20T14:20:27Z-
dc.date.accessioned2016-10-25T17:41:39Z-
dc.date.available2014-05-20T14:20:27Z-
dc.date.available2016-10-25T17:41:39Z-
dc.date.issued2009-10-01-
dc.identifierhttp://dx.doi.org/10.1365/s10337-009-1277-7-
dc.identifier.citationChromatographia. Wiesbaden: Vieweg, v. 70, n. 7-8, p. 1135-1142, 2009.-
dc.identifier.issn0009-5893-
dc.identifier.urihttp://hdl.handle.net/11449/26154-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/26154-
dc.description.abstractASTM D6729 gas chromatographic fingerprinting coupled to pattern-recognition multivariate soft independent modeling of class analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality. SIMCA, was performed on gas chromatographic fingerprints to classify the quality of representative commercial gasoline samples selected by hierarchical cluster analysis and collected over a 5 month period from gas stations in So Paulo State, Brazil. Following an optimized ASTM D6729 gas chromatographic-SIMCA algorithm, it was possible to correctly classify the majority of commercial gasoline samples. The method could be employed for rapid monitoring to discourage adulteration.en
dc.description.sponsorshipAgência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP)-
dc.description.sponsorshipGas Natural e Biocombustiveis - ANP-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent1135-1142-
dc.language.isoeng-
dc.publisherVieweg-
dc.sourceWeb of Science-
dc.subjectGas chromatographyen
dc.subjectASTM D6729en
dc.subjectPattern-recognition multivariate SIMCAen
dc.subjectBrazilian gasolineen
dc.titleGC Fingerprints Coupled to Pattern-Recognition Multivariate SIMCA Chemometric Analysis for Brazilian Gasoline Quality Studiesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ, UNESP, Inst Chem,Organ Chem Dept,CEMPEQC, Ctr Monitoring & Res Qual Fuels Biofuels Crude Oi, BR-14800900 Araraquara, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Inst Chem,Organ Chem Dept,CEMPEQC, Ctr Monitoring & Res Qual Fuels Biofuels Crude Oi, BR-14800900 Araraquara, SP, Brazil-
dc.identifier.doi10.1365/s10337-009-1277-7-
dc.identifier.wosWOS:000271069400016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofChromatographia-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.