You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/29431
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTholon, Patricia-
dc.contributor.authorQueiroz, Sandra Aidar de-
dc.date.accessioned2014-05-20T15:15:01Z-
dc.date.accessioned2016-10-25T17:48:53Z-
dc.date.available2014-05-20T15:15:01Z-
dc.date.available2016-10-25T17:48:53Z-
dc.date.issued2009-10-01-
dc.identifierhttp://dx.doi.org/10.1590/S0103-84782009000700050-
dc.identifier.citationCiência Rural. Universidade Federal de Santa Maria (UFSM), v. 39, n. 7, p. 2261-2269, 2009.-
dc.identifier.issn0103-8478-
dc.identifier.urihttp://hdl.handle.net/11449/29431-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/29431-
dc.description.abstractA utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos.pt
dc.description.abstractThe use of mathematical models to describe animal growth is not recent. They are able to summarize information on strategic dots of animal growth development and to describe the evolution of weight according to the animal age. It is also possible to compare different individuals in similar physiologic stages. The growth models most commonly used in poultry breeding are derived from Richards function, and they present parameters that provide biological interpretation and knowledge to select a specific shape of growth curve in poultry. However, it is also possible to use segmented polynomials to describe trend changes during the animal growth. One needs to consider important variables affecting the growth curve parameters estimates, such as, production system, specie, sex and their interactions. Model Goodness-of-fit can be based on many criteria such as coefficient of determination (R2), residual mean squared error, (LSe), estimated predicted mean error (PME), the easiness the analysis to reach convergence and the possibility of biological interpretation of parameters. Studies involving modeling and description of growth curve and their components are described in literature, but, there is no selection programs applied to the growth curve shape. The importance of determinating the parameters of growth curve models is more relevant when considering that most of the genetic gains for growth traits are related to selection, on weights near to the inflexion point. Often, selection to fast growth is important in all breeding programs, and could be based on genetic parameters of the growth curve parameters. These parameters are related to important productive and reproductive traits, and present different values, according to specie, sex and models used in evaluation. Alternatively, other methodology used is random regression models, allowing graduation changes in (co) variances between ages during the time and predicting (co)variances during the studied trajectory. The use of random regression models has the advantage to allow the partition of phenotypic growth curve (co)variance in its different genetic additive and the permanent environment effects, using random regression coefficients for each different effect. This review aimed at summarizing the main frequentists mathematical models used in the studies of growth curves in birds, emphasizing those applied to estimate genetic and phenotypic parameters.en
dc.format.extent2261-2269-
dc.language.isopor-
dc.publisherUniversidade Federal de Santa Maria (UFSM)-
dc.sourceSciELO-
dc.subjectgrowth parametersen
dc.subjectgrowth modelsen
dc.subjectGrowth rateen
dc.subjectPoultryen
dc.subjectaviculturapt
dc.subjectmodelos estatísticos para crescimentopt
dc.subjectparâmetros do crescimentopt
dc.subjectTaxa de crescimentopt
dc.titleModelos matemáticos utilizados para descrever curvas de crescimento em aves aplicados ao melhoramento genético animalpt
dc.title.alternativeMathematic models applied to describe growth curves in poultry applied to animal breedingen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal Rural do Semi-Árido (UFERSA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal Rural do Semiárido Departamento de Ciências Animais-
dc.description.affiliationUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.description.affiliationUnespUniversidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Departamento de Zootecnia-
dc.identifier.doi10.1590/S0103-84782009000700050-
dc.identifier.scieloS0103-84782009000700050-
dc.identifier.wosWOS:000270230400050-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileS0103-84782009000700050.pdf-
dc.relation.ispartofCiência Rural-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.