You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/30584
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSavu, Raluca-
dc.contributor.authorPonce, Miguel Adolfo-
dc.contributor.authorJoanni, Ednan-
dc.contributor.authorBueno, Paulo Roberto-
dc.contributor.authorCastro, Miriam-
dc.contributor.authorCilense, Mario-
dc.contributor.authorVarela, José Arana-
dc.contributor.authorLongo, Elson-
dc.date.accessioned2014-05-20T15:17:44Z-
dc.date.accessioned2016-10-25T17:51:33Z-
dc.date.available2014-05-20T15:17:44Z-
dc.date.available2016-10-25T17:51:33Z-
dc.date.issued2009-03-01-
dc.identifierhttp://dx.doi.org/10.1590/S1516-14392009000100010-
dc.identifier.citationMaterials Research. ABM, ABC, ABPol, v. 12, n. 1, p. 83-87, 2009.-
dc.identifier.issn1516-1439-
dc.identifier.urihttp://hdl.handle.net/11449/30584-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/30584-
dc.description.abstractPorous nano and micro crystalline tin oxide films were deposited by RF Magnetron Sputtering and doctor blade techniques, respectively. Electrical resistance and impedance spectroscopy measurements, as a function of temperature and atmosphere, were performed in order to determine the influence of the microstructure and working conditions over the electrical response of the sensors. The conductivity of all samples increases with the temperature and decreases in oxygen, as expected for an n-type semiconducting material. The impedance plots indicated the existence of two time constants related to the grains and the grain boundaries. The Nyquist diagrams at low frequencies revealed the changes that took place in the grain boundary region, with the contribution of the grains being indicated by the formation of a second semicircle at high frequencies. The better sensing performance of the doctor bladed samples can be explained by their lower initial resistance values, bigger grain sizes and higher porosity.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent83-87-
dc.language.isoeng-
dc.publisherABM, ABC, ABPol-
dc.sourceSciELO-
dc.subjectsemiconductorsen
dc.subjectimpedance spectroscopyen
dc.subjectelectrical propertieen
dc.titleGrain size effect on the electrical response of SnO2 thin and thick film gas sensorsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionFacultad de Ingeniería INTEMA-
dc.description.affiliationUNESP Instituto de Química Laboratório Interdisciplinar de Eletroquímica e Cerâmica-
dc.description.affiliationFacultad de Ingeniería INTEMA-
dc.description.affiliationUnespUNESP Instituto de Química Laboratório Interdisciplinar de Eletroquímica e Cerâmica-
dc.identifier.doi10.1590/S1516-14392009000100010-
dc.identifier.scieloS1516-14392009000100010-
dc.identifier.wosWOS:000266278400010-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileS1516-14392009000100010.pdf-
dc.relation.ispartofMaterials Research-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.