You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/31260
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBelato, D.-
dc.contributor.authorWeber, H. I.-
dc.contributor.authorBalthazar, José Manoel-
dc.contributor.authorMook, D. T.-
dc.date.accessioned2014-05-20T15:19:52Z-
dc.date.accessioned2016-10-25T17:52:50Z-
dc.date.available2014-05-20T15:19:52Z-
dc.date.available2016-10-25T17:52:50Z-
dc.date.issued2001-03-01-
dc.identifierhttp://dx.doi.org/10.1016/S0020-7683(00)00130-X-
dc.identifier.citationInternational Journal of Solids and Structures. Oxford: Pergamon-Elsevier B.V., v. 38, n. 10-13, p. 1699-1706, 2001.-
dc.identifier.issn0020-7683-
dc.identifier.urihttp://hdl.handle.net/11449/31260-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/31260-
dc.description.abstractNonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor, considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter. Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a medium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena, including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close to the value of the pendulum's angular displacement given by alpha (C)= pi /2. The aims of this study are to better understand nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the existence of a chaotic attractor near the fundamental resonance. (C) 2001 Elsevier B.V. Ltd. All rights reserved.en
dc.format.extent1699-1706-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectnonideal systemspt
dc.subjectnonlinear dynamicspt
dc.subjectchaotic vibrationspt
dc.titleChaotic vibrations of a nonideal electro-mechanical systemen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionVirginia Polytech Inst & State Univ-
dc.description.affiliationUniv Estadual Campinas, Fac Engn Mecan, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationPontificia Univ Catolica Rio de Janeiro, DEM, BR-22453900 Rio de Janeiro, Brazil-
dc.description.affiliationUNESP, Inst Geociencias & Ciências Exatas, BR-13500230 Rio Claro, SP, Brazil-
dc.description.affiliationVirginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA-
dc.description.affiliationUnespUNESP, Inst Geociencias & Ciências Exatas, BR-13500230 Rio Claro, SP, Brazil-
dc.identifier.doi10.1016/S0020-7683(00)00130-X-
dc.identifier.wosWOS:000166882800005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Solids and Structures-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.