Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/32170
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kraenkel, Roberto André | - |
dc.contributor.author | Pereira, J. G. | - |
dc.contributor.author | Manna, M. A. | - |
dc.date.accessioned | 2014-05-20T15:20:59Z | - |
dc.date.accessioned | 2016-10-25T17:54:12Z | - |
dc.date.available | 2014-05-20T15:20:59Z | - |
dc.date.available | 2016-10-25T17:54:12Z | - |
dc.date.issued | 1992-04-01 | - |
dc.identifier | http://dx.doi.org/10.1088/0031-8949/45/4/001 | - |
dc.identifier.citation | Physica Scripta. Stockholm: Royal Swedish Acad Sciences, v. 45, n. 4, p. 289-291, 1992. | - |
dc.identifier.issn | 0281-1847 | - |
dc.identifier.uri | http://hdl.handle.net/11449/32170 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/32170 | - |
dc.description.abstract | We show that a surface solitary wave governed by the Korteweg-de Vries equation can develop in a fluid acted upon by fluxes of heat and of a second diffusive element. This solitary wave appears as a manifestation of a hydrodynamical instability which sets in only when a certain relation involving the parameters of the system is satisfied. | en |
dc.format.extent | 289-291 | - |
dc.language.iso | eng | - |
dc.publisher | Royal Swedish Acad Sciences | - |
dc.source | Web of Science | - |
dc.title | SURFACE SOLITARY WAVES IN A DOUBLE DIFFUSIVE SYSTEM | en |
dc.type | outro | - |
dc.contributor.institution | UNIV MONTPELLIER 2 | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | UNIV MONTPELLIER 2,PHYS MATH LAB,F-34060 MONTPELLIER,FRANCE | - |
dc.identifier.doi | 10.1088/0031-8949/45/4/001 | - |
dc.identifier.wos | WOS:A1992HL61700001 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Physica Scripta | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.