You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/32682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClaudino, Mário A.-
dc.contributor.authorPriviero, Fernanda B. M.-
dc.contributor.authorTeixeira, Cleber E.-
dc.contributor.authorNucci, Gilberto de-
dc.contributor.authorAntunes, Edson-
dc.contributor.authorZanesco, Angelina-
dc.date.accessioned2014-05-20T15:21:33Z-
dc.date.accessioned2016-10-25T17:55:01Z-
dc.date.available2014-05-20T15:21:33Z-
dc.date.available2016-10-25T17:55:01Z-
dc.date.issued2004-05-01-
dc.identifierhttp://dx.doi.org/10.1016/j.urology.2003.11.034-
dc.identifier.citationUrology. New York: Elsevier B.V., v. 63, n. 5, p. 1004-1008, 2004.-
dc.identifier.issn0090-4295-
dc.identifier.urihttp://hdl.handle.net/11449/32682-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/32682-
dc.description.abstractObjectives. To evaluate the contractile and relaxing responses in rat corpus cavernosum (RCC) from rats after 8 weeks of run training, because erectile function is highly dependent on nitric oxide (NO) from nitrergic fibers or endothelium. Physical activity enhances NO production and improves endothelial function, with beneficial effects on cardiovascular disease.Methods. The training program consisted of 8 weeks of run training, 5 days/wk, and each session lasted 60 minutes. The RCC was isolated, and concentration-response curves to NO, acetylcholine, sodium nitroprusside, phenylephrine, and endothelin were obtained. The excitatory and inhibitory effects of electrical field stimulation (2 to 32 Hz) were also evaluated.Results. NO (0.1 to 100 muM) and sodium nitroprusside (0.01 to 1000 muM) produced a relaxing effect in RCC in a dose-dependent manner, with the maximal responses to NO (control 62% +/- 4%, trained 88% +/- 3%) and sodium nitroprusside (control 83% +/- 3%, trained 95% +/- 2%) significantly enhanced after 8 weeks of run training. However, acetylcholine-induced relaxations were not affected by exercise. Similarly, electrical field stimulation-induced relaxations were significantly increased in RCC from trained rats at 2 Hz (control 2.4% +/- 0.3%, trained 4.2% +/- 0.5%) and 4 Hz (control 5.3% +/- 1.2%, trained 12.5% +/- 1.7%). The contractile sensitivity of RCC to phenylephrine (0.01 to 100 AM) and endothelin (0.01 to 100 nM) was not modified by training exercise.Conclusions. Our findings suggest that run training enhances functional responses in rat RCC that involves increases in the NO-cyclic guanosine monophosphate signaling pathway by endothelium-independent mechanisms that is not accompanied by changes in contractile sensitivity. (C) 2004 Elsevier B.V.en
dc.format.extent1004-1008-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.titleImprovement in relaxation response in corpus cavernosum from trained ratsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Physical Education, Biosciences Institute, UNESP, Rio Claro, São Paulo, Brazil-
dc.description.affiliationUNICAMP, Fac Med Sci, Dept Pharmacol, Campinas, SP, Brazil-
dc.description.affiliationUnespDepartment of Physical Education, Biosciences Institute, UNESP, Rio Claro, São Paulo, Brazil-
dc.identifier.doi10.1016/j.urology.2003.11.034-
dc.identifier.wosWOS:000221669400058-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofUrology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.