You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/32922
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarvalho, Alexandre Nolasco de-
dc.contributor.authorCruz, German Jesus Lozada-
dc.date.accessioned2014-05-20T15:21:49Z-
dc.date.accessioned2016-10-25T17:55:22Z-
dc.date.available2014-05-20T15:21:49Z-
dc.date.available2016-10-25T17:55:22Z-
dc.date.issued2007-01-15-
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2006.02.046-
dc.identifier.citationJournal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/11449/32922-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/32922-
dc.description.abstractWe obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent1216-1239-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectSemilinear parabolic problemsen
dc.subjectNonlinear boundary conditionsen
dc.subjectDumbbell domainsen
dc.subjectStable nonconstant equilibriaen
dc.subjectInvariant manifoldsen
dc.titlePatterns in parabolic problems with nonlinear boundary conditionsen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade de São Paulo (USP), Instituto de Ciências Matemáticas e Computação, São Carlos, SP, Brasil-
dc.description.affiliationUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Matemática, São José do Rio Preto, SP, Brasil-
dc.description.sponsorshipIdCNPq: 305447/2005-0-
dc.description.sponsorshipIdFAPESP: 2003/10042-0-
dc.description.sponsorshipIdFAPESP: 2000/01479-8-
dc.identifier.doi10.1016/j.jmaa.2006.02.046-
dc.identifier.wosWOS:000242730600032-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000242730600032.pdf-
dc.relation.ispartofJournal of Mathematical Analysis and Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.