Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/33811
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorHuerta Yero, Eduardo Javier-
dc.contributor.authorAmaral Henriques, Marco Auerlio-
dc.date.accessioned2014-05-20T15:22:55Z-
dc.date.accessioned2016-10-25T17:56:44Z-
dc.date.available2014-05-20T15:22:55Z-
dc.date.available2016-10-25T17:56:44Z-
dc.date.issued2007-11-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jpdc.2007.04.015-
dc.identifier.citationJournal of Parallel and Distributed Computing. San Diego: Academic Press Inc. Elsevier B.V., v. 67, n. 11, p. 1155-1167, 2007.-
dc.identifier.issn0743-7315-
dc.identifier.urihttp://hdl.handle.net/11449/33811-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/33811-
dc.description.abstractAlthough cluster environments have an enormous potential processing power, real applications that take advantage of this power remain an elusive goal. This is due, in part, to the lack of understanding about the characteristics of the applications best suited for these environments. This paper focuses on Master/Slave applications for large heterogeneous clusters. It defines application, cluster and execution models to derive an analytic expression for the execution time. It defines speedup and derives speedup bounds based on the inherent parallelism of the application and the aggregated computing power of the cluster. The paper derives an analytical expression for efficiency and uses it to define scalability of the algorithm-cluster combination based on the isoefficiency metric. Furthermore, the paper establishes necessary and sufficient conditions for an algorithm-cluster combination to be scalable which are easy to verify and use in practice. Finally, it covers the impact of network contention as the number of processors grow. (C) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent1155-1167-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectparallel systemspt
dc.subjectdistributed systemspt
dc.subjectmodeling and predictionpt
dc.titleSpeedup and scalability analysis of Master-Slave applications on large heterogeneous clustersen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationState Univ São Paulo, Sch Elect & Comp Engn, São Paulo, Brazil-
dc.description.affiliationUnespState Univ São Paulo, Sch Elect & Comp Engn, São Paulo, Brazil-
dc.identifier.doi10.1016/j.jpdc.2007.04.015-
dc.identifier.wosWOS:000250637100002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Parallel and Distributed Computing-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.