You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/33824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuzzi, Claudio Aguinaldo-
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorMedrado, João Carlos da Rocha-
dc.date.accessioned2014-05-20T15:22:56Z-
dc.date.accessioned2016-10-25T17:56:45Z-
dc.date.available2014-05-20T15:22:56Z-
dc.date.available2016-10-25T17:56:45Z-
dc.date.issued2007-11-15-
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2007.02.011-
dc.identifier.citationJournal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B. V., v. 335, n. 2, p. 1335-1346, 2007.-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/11449/33824-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/33824-
dc.description.abstractFor a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent1335-1346-
dc.language.isoeng-
dc.publisherElsevier B. V.-
dc.sourceWeb of Science-
dc.subjectPeriodic orbitsen
dc.subjectQuadratic vector fieldsen
dc.subjectReversibilityen
dc.titlePeriodic orbits for a class of reversible quadratic vector field on R-3en
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Autônoma de Barcelona (UAB)-
dc.contributor.institutionUniversidade Federal de Goiás (UFG)-
dc.description.affiliationDepartamento de Matemática, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brasil-
dc.description.affiliationDepartamento de Matemática, Universidade Autônoma de Barcelona, Barcelona, Espanha-
dc.description.affiliationInstituto de Matemática e Estatística, Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil-
dc.description.affiliationUnespDepartamento de Matemática, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brasil-
dc.identifier.doi10.1016/j.jmaa.2007.02.011-
dc.identifier.wosWOS:000248854000042-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000248854000042.pdf-
dc.relation.ispartofJournal of Mathematical Analysis and Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.