You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/34484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrade, MGC-
dc.contributor.authorFanti, ELC-
dc.date.accessioned2014-05-20T15:23:47Z-
dc.date.accessioned2016-10-25T17:57:46Z-
dc.date.available2014-05-20T15:23:47Z-
dc.date.available2016-10-25T17:57:46Z-
dc.date.issued1994-04-01-
dc.identifierhttp://dx.doi.org/10.1007/BF02567596-
dc.identifier.citationManuscripta Mathematica. New York: Springer Verlag, v. 83, n. 1, p. 1-18, 1994.-
dc.identifier.issn0025-2611-
dc.identifier.urihttp://hdl.handle.net/11449/34484-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/34484-
dc.description.abstractWe define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.en
dc.format.extent1-18-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.titleA RELATIVE COHOMOLOGICAL INVARIANT FOR GROUP PAIRSen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP,DEPT MATEMAT,RUA CRISTOVAO COLOMBO 2265,BR-15054000 SAO JOSE,BRAZIL-
dc.description.affiliationUnespUNESP,DEPT MATEMAT,RUA CRISTOVAO COLOMBO 2265,BR-15054000 SAO JOSE,BRAZIL-
dc.identifier.doi10.1007/BF02567596-
dc.identifier.wosWOS:A1994NH44000001-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofManuscripta Mathematica-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.