You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/34797
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlves, MMS-
dc.contributor.authorGeronimo, JR-
dc.contributor.authorPalazzo, R.-
dc.contributor.authorCosta, SIR-
dc.contributor.authorInterlando, J. C.-
dc.contributor.authorAraujo, M. C.-
dc.date.accessioned2014-05-20T15:24:08Z-
dc.date.accessioned2016-10-25T17:58:17Z-
dc.date.available2014-05-20T15:24:08Z-
dc.date.available2016-10-25T17:58:17Z-
dc.date.issued2002-01-28-
dc.identifierhttp://dx.doi.org/10.1016/S0012-365X(01)00206-0-
dc.identifier.citationDiscrete Mathematics. Amsterdam: Elsevier B.V., v. 243, n. 1-3, p. 187-194, 2002.-
dc.identifier.issn0012-365X-
dc.identifier.urihttp://hdl.handle.net/11449/34797-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/34797-
dc.description.abstractIn this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.en
dc.format.extent187-194-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectbinary codespt
dc.subjectZ(4)-linearitypt
dc.subjectpropelinear codespt
dc.subjectisometry groupspt
dc.subjectG-linearitypt
dc.titleRelating propelinear and binary G-linear codesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Mato Grosso (UFMT)-
dc.description.affiliationUniv Estadual Campinas, UNICAMP, Inst Matemat, Dept Matemat, BR-13081970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Maringa, Dept Matemat, Maringa, Parana, Brazil-
dc.description.affiliationUNICAMP, Dept Telemat, BR-13081970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil-
dc.description.affiliationUFMT, Dept Matemat, Rondonopolis, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil-
dc.identifier.doi10.1016/S0012-365X(01)00206-0-
dc.identifier.wosWOS:000173061500012-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000173061500012.pdf-
dc.relation.ispartofDiscrete Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.