You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/35871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDa Silva, FLB-
dc.contributor.authorJonsson, B.-
dc.contributor.authorPenfold, R.-
dc.date.accessioned2014-05-20T15:25:27Z-
dc.date.accessioned2016-10-25T17:59:55Z-
dc.date.available2014-05-20T15:25:27Z-
dc.date.available2016-10-25T17:59:55Z-
dc.date.issued2001-07-01-
dc.identifierhttp://dx.doi.org/10.1110/ps.42601-
dc.identifier.citationProtein Science. Plainview: Cold Spring Harbor Lab Press, v. 10, n. 7, p. 1415-1425, 2001.-
dc.identifier.issn0961-8368-
dc.identifier.urihttp://hdl.handle.net/11449/35871-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/35871-
dc.description.abstractMonte Carlo simulations are used to assess the adequacy of the Tanford-Kirkwood prescription for electrostatic interactions in macromolecules. Within a continuum dielectric framework, the approach accurately describes salt screening of electrostatic interactions for moderately charged systems consistent with common proteins at physiological conditions. The limitations of the Debye-Huckel theory, which forms the statistical mechanical basis for the Tanford-Kirkwood result, become apparent for highly charged systems. It is shown, both by an analysis of the Debye-Huckel theory and by numerical simulations, that the difference in dielectric permittivity between macromolecule and surrounding solvent does not play a significant role for salt effects if the macromolecule is highly charged. By comparison to experimental data, the continuum dielectric model (combined with either an approximate effective Hamiltonian as in the Tanford-Kirkwood treatment or with exact Monte Carlo simulations) satisfactorily predicts the effects of charge mutation on metal ion binding constants, but only if the macromolecule and solvent are assigned the same or similar permittivities.en
dc.format.extent1415-1425-
dc.language.isoeng-
dc.publisherCold Spring Harbor Lab Press-
dc.sourceWeb of Science-
dc.subjectelectrostatic interactionspt
dc.subjectDebye-Huckelpt
dc.subjectlow dielectric cavitypt
dc.subjectcomputer simulationspt
dc.subjectcontinuum modelpt
dc.subjectproteins modelpt
dc.titleA critical investigation of the Tanford-Kirkwood scheme by means of Monte Carlo simulationsen
dc.typeoutro-
dc.contributor.institutionUniv Lund-
dc.contributor.institutionInst Food Res-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Lund, Ctr Chem, S-22100 Lund, Sweden-
dc.description.affiliationInst Food Res, Norwich NR4 7UA, Norfolk, England-
dc.description.affiliationUNESP, Fac Sci, Dept Phys, Grp Biomol Phys, BR-17033360 São Paulo, Brazil-
dc.description.affiliationUnespUNESP, Fac Sci, Dept Phys, Grp Biomol Phys, BR-17033360 São Paulo, Brazil-
dc.identifier.doi10.1110/ps.42601-
dc.identifier.wosWOS:000169457200014-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000169457200014.pdf-
dc.relation.ispartofProtein Science-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.