You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/35917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoedtel, A.-
dc.contributor.authorda Silva, I. N.-
dc.contributor.authorSerni, PJA-
dc.contributor.authorAvolio, E.-
dc.contributor.authorIEEE-
dc.date.accessioned2014-05-20T15:25:30Z-
dc.date.accessioned2016-10-25T18:00:00Z-
dc.date.available2014-05-20T15:25:30Z-
dc.date.available2016-10-25T18:00:00Z-
dc.date.issued2002-01-01-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2002.1007717-
dc.identifier.citationProceeding of the 2002 International Joint Conference on Neural Networks, Vols 1-3. New York: IEEE, p. 1379-1384, 2002.-
dc.identifier.issn1098-7576-
dc.identifier.urihttp://hdl.handle.net/11449/35917-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/35917-
dc.description.abstractThe induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach.en
dc.format.extent1379-1384-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.titleLoad torque estimation in induction motors using artificial neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationState Univ São Paulo, FE, DEE, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespState Univ São Paulo, FE, DEE, BR-17033360 Bauru, SP, Brazil-
dc.identifier.doi10.1109/IJCNN.2002.1007717-
dc.identifier.wosWOS:000177402800246-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceeding of the 2002 International Joint Conference on Neural Networks, Vols 1-3-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.