Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/35917
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goedtel, A. | - |
dc.contributor.author | da Silva, I. N. | - |
dc.contributor.author | Serni, PJA | - |
dc.contributor.author | Avolio, E. | - |
dc.contributor.author | IEEE | - |
dc.date.accessioned | 2014-05-20T15:25:30Z | - |
dc.date.accessioned | 2016-10-25T18:00:00Z | - |
dc.date.available | 2014-05-20T15:25:30Z | - |
dc.date.available | 2016-10-25T18:00:00Z | - |
dc.date.issued | 2002-01-01 | - |
dc.identifier | http://dx.doi.org/10.1109/IJCNN.2002.1007717 | - |
dc.identifier.citation | Proceeding of the 2002 International Joint Conference on Neural Networks, Vols 1-3. New York: IEEE, p. 1379-1384, 2002. | - |
dc.identifier.issn | 1098-7576 | - |
dc.identifier.uri | http://hdl.handle.net/11449/35917 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/35917 | - |
dc.description.abstract | The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach. | en |
dc.format.extent | 1379-1384 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.title | Load torque estimation in induction motors using artificial neural networks | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | State Univ São Paulo, FE, DEE, BR-17033360 Bauru, SP, Brazil | - |
dc.description.affiliationUnesp | State Univ São Paulo, FE, DEE, BR-17033360 Bauru, SP, Brazil | - |
dc.identifier.doi | 10.1109/IJCNN.2002.1007717 | - |
dc.identifier.wos | WOS:000177402800246 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceeding of the 2002 International Joint Conference on Neural Networks, Vols 1-3 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.