Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/35928
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ranga, A. S. | - |
dc.contributor.author | Van Assche, W. | - |
dc.date.accessioned | 2014-05-20T15:25:31Z | - |
dc.date.accessioned | 2016-10-25T18:00:01Z | - |
dc.date.available | 2014-05-20T15:25:31Z | - |
dc.date.available | 2016-10-25T18:00:01Z | - |
dc.date.issued | 2002-08-01 | - |
dc.identifier | http://dx.doi.org/10.1006/jath.2002.3700 | - |
dc.identifier.citation | Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 117, n. 2, p. 255-278, 2002. | - |
dc.identifier.issn | 0021-9045 | - |
dc.identifier.uri | http://hdl.handle.net/11449/35928 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/35928 | - |
dc.description.abstract | We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA). | en |
dc.format.extent | 255-278 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.title | Blumenthal's theorem for Laurent orthogonal polynomials | en |
dc.type | outro | - |
dc.contributor.institution | Katholieke Univ Leuven | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium | - |
dc.description.affiliation | Univ Estadual Paulista, DCCE, IBILCE, Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, DCCE, IBILCE, Sao Jose do Rio Preto, SP, Brazil | - |
dc.identifier.doi | 10.1006/jath.2002.3700 | - |
dc.identifier.wos | WOS:000178155900004 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.relation.ispartof | Journal of Approximation Theory | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.