You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/35928
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRanga, A. S.-
dc.contributor.authorVan Assche, W.-
dc.date.accessioned2014-05-20T15:25:31Z-
dc.date.accessioned2016-10-25T18:00:01Z-
dc.date.available2014-05-20T15:25:31Z-
dc.date.available2016-10-25T18:00:01Z-
dc.date.issued2002-08-01-
dc.identifierhttp://dx.doi.org/10.1006/jath.2002.3700-
dc.identifier.citationJournal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 117, n. 2, p. 255-278, 2002.-
dc.identifier.issn0021-9045-
dc.identifier.urihttp://hdl.handle.net/11449/35928-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/35928-
dc.description.abstractWe investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).en
dc.format.extent255-278-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.titleBlumenthal's theorem for Laurent orthogonal polynomialsen
dc.typeoutro-
dc.contributor.institutionKatholieke Univ Leuven-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationKatholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium-
dc.description.affiliationUniv Estadual Paulista, DCCE, IBILCE, Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, DCCE, IBILCE, Sao Jose do Rio Preto, SP, Brazil-
dc.identifier.doi10.1006/jath.2002.3700-
dc.identifier.wosWOS:000178155900004-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofJournal of Approximation Theory-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.