Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/36992
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | De Andrade, EXL | - |
dc.contributor.author | Dimitrov, D. K. | - |
dc.contributor.author | Jones, W. B. | - |
dc.contributor.author | Ranga, A. S. | - |
dc.date.accessioned | 2014-05-20T15:26:55Z | - |
dc.date.accessioned | 2016-10-25T18:01:37Z | - |
dc.date.available | 2014-05-20T15:26:55Z | - |
dc.date.available | 2016-10-25T18:01:37Z | - |
dc.date.issued | 1998-01-01 | - |
dc.identifier | http://getinfo.de/app/Action-of-Eucalyptus-oils-against-Mycobacterium/id/BLSE%3ARN047458560 | - |
dc.identifier.citation | Orthogonal Functions, Moment Theory, and Continued Fractions. New York: Marcel Dekker, v. 199, p. 1-14, 1998. | - |
dc.identifier.issn | 0075-8469 | - |
dc.identifier.uri | http://hdl.handle.net/11449/36992 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/36992 | - |
dc.description.abstract | Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured. | en |
dc.format.extent | 1-14 | - |
dc.language.iso | eng | - |
dc.publisher | Marcel Dekker | - |
dc.source | Web of Science | - |
dc.title | Chebyshev-Laurent polynomials and weighted approximation | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Estadual Paulista, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estat, BR-1505400 Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estat, BR-1505400 Sao Jose do Rio Preto, SP, Brazil | - |
dc.identifier.wos | WOS:000075397900001 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Orthogonal Functions, Moment Theory, and Continued Fractions | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.