Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/37227
Registro de metadados completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Rosa, GJM | - |
dc.contributor.author | Gianola, D. | - |
dc.contributor.author | Padovani, C. R. | - |
dc.date.accessioned | 2014-05-20T15:27:12Z | - |
dc.date.accessioned | 2016-10-25T18:01:58Z | - |
dc.date.available | 2014-05-20T15:27:12Z | - |
dc.date.available | 2016-10-25T18:01:58Z | - |
dc.date.issued | 2004-08-01 | - |
dc.identifier | http://dx.doi.org/10.1080/0266476042000214538 | - |
dc.identifier.citation | Journal of Applied Statistics. Basingstoke: Carfax Publishing, v. 31, n. 7, p. 855-873, 2004. | - |
dc.identifier.issn | 0266-4763 | - |
dc.identifier.uri | http://hdl.handle.net/11449/37227 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/37227 | - |
dc.description.abstract | Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner. | en |
dc.format.extent | 855-873 | - |
dc.language.iso | eng | - |
dc.publisher | Carfax Publishing | - |
dc.source | Web of Science | - |
dc.subject | robust-inference | pt |
dc.subject | longitudinal study | pt |
dc.subject | mixed model | pt |
dc.subject | thick-tailed distribution | pt |
dc.subject | heteroscedasticity | pt |
dc.subject | Bayesian inference | pt |
dc.title | Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC | en |
dc.type | outro | - |
dc.contributor.institution | Michigan State University | - |
dc.contributor.institution | Univ Wisconsin | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Michigan State Univ, Dept Anim Sci, E Lansing, MI 48824 USA | - |
dc.description.affiliation | Univ Wisconsin, Madison, WI USA | - |
dc.description.affiliation | UNESP, São Paulo, Brazil | - |
dc.description.affiliationUnesp | UNESP, São Paulo, Brazil | - |
dc.identifier.doi | 10.1080/0266476042000214538 | - |
dc.identifier.wos | WOS:000223673500008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Applied Statistics | - |
Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp |
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.