You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/38038
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopes, V-
dc.contributor.authorTurra, A. E.-
dc.contributor.authorMuller-Slany, H. H.-
dc.contributor.authorBrunzel, F.-
dc.contributor.authorInman, D. J.-
dc.contributor.authorSPIE-
dc.date.accessioned2014-05-20T15:28:10Z-
dc.date.accessioned2016-10-25T18:03:10Z-
dc.date.available2014-05-20T15:28:10Z-
dc.date.available2016-10-25T18:03:10Z-
dc.date.issued2002-01-01-
dc.identifier.citationProceedings of Imac-xx: Structural Dynamics Vols I and Ii. Bethel: Soc Experimental Mechanics Inc., v. 4753, p. 484-490, 2002.-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/11449/38038-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/38038-
dc.description.abstractThis paper presents two different approaches to detect, locate, and characterize structural damage. Both techniques utilize electrical impedance in a first stage to locate the damaged area. In the second stage, to quantify the damage severity, one can use neural network, or optimization technique. The electrical impedance-based, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations, this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors, and therefore, it is able to detect the damage in its early stage. Optimization approaches must be used for the case where a good condensed model is known, while neural network can be also used to estimate the nature of damage without prior knowledge of the model of the structure. The paper concludes with an experimental example in a welded cubic aluminum structure, in order to verify the performance of these two proposed methodologies.en
dc.format.extent484-490-
dc.language.isoeng-
dc.publisherSoc Experimental Mechanics Inc-
dc.sourceWeb of Science-
dc.titleStructural health evaluation by optimization techinique and artificial neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, Dept Mech Engn, BR-13385000 Llha Solteira, SP, Brazil-
dc.description.affiliationUnespUNESP, Dept Mech Engn, BR-13385000 Llha Solteira, SP, Brazil-
dc.identifier.wosWOS:000176646000070-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of Imac-xx: Structural Dynamics Vols I and Ii-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.